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Abstract

We analyze the business cycle implications of adaptive learning at the effective lower
bound (ELB). Regime shifts by monetary policy are not directly observed by agents, and
instead they gradually learn about the changes based on past observations. We first derive
the stability conditions associated with these models in a general regime-switching frame-
work, and then estimate the Smets-Wouters (2007) model on U.S. data over the period
1966-2016 under a variety of learning rules, where agents do not immediately recognize
the break in the monetary policy regime when the ELB on nominal interest rates starts
binding. Our results show that, (i) AL models typically outperform the regime-switching
RE model in terms of in-sample fit, (ii) the impulse responses in both RE and learning
models change in the same direction with the switch to the ELB episode, but the magni-
tudes under learning models tend to be smaller, (iii) counterfactual experiments suggest

that stronger learning dynamics typically prolong the ELB duration.
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1 Introduction

With the onset of the Global Financial Crisis in 2007-08 and the subsequent drop of interest
rates to near-zero levels among the leading central banks, there has been increased interest
among policymakers and central bankers alike about the effective lower bound (ELB) constraint
on nominal interest rates. There is still ongoing debate about the precise impact of the ELB
constraint on the economy as a whole and in particular about its macroeconomic cost in terms
of aggregate output levels. A common approach in most macroeconomic models examining
the ELB episode is the assumption of Rational Expectations (RE), where agents have perfect
information about the underlying economic conditions along with all other cross-correlations
of the relevant macroeconomic variables. In this paper, we contribute to the growing literature
on analyzing the effects of ELB episodes by relaxing the perfect information assumption, and
instead estimating DSGE models under adaptive learning subject to the ELB constraint.

We model the ELB constraint as a regime shift in monetary policy, which is captured as a
Markov-switching process. In this sense, monetary policy follows a standard Taylor rule during
normal times as long as the ELB constraint does not bind. When the ELB constraint starts
binding, monetary policy switches to a pegged interest rate regime, where it is unable to react
to changes in inflation and output gap. This approach is combined with adaptive learning on
private sector agents’ expectation formation process, which relaxes the assumption that agents
have perfect knowledge about the underlying economic conditions. Instead, they have their
own forecasting models, possibly under- or over-parameterized, which may not coincide with
the correct economic structure. In this sense, agents act as econometricians and update their
models each period as new observations become available.

The presence of adaptive learning means that private sector agents use a class of econometric
models, where they gradually become aware of the underlying regime switches only to the extent
that these switches have an observable impact on their information set. In the context of the
ELB, this corresponds to three key deviations from the RE framework: first, as the nominal
rates drop to near zero levels following the GFC, agents do not initially know where the lower
bound is, and particularly whether and how far the rates will drop into the negative territory.
This can also be interpreted as a situation where the lower bound is known to the central
bank but unknown to agents, who instead employ a "stochastic lower bound" along the lines
of Masolo & Winant (2019). Second, agents do not immediately know the structural changes
implied by the regime switch but only learn about them over time, in particular about the
cross-correlations and the transmission of shocks. Third and most importantly, the expected
duration of the ELB regime is unknown to agents. Studying the business cycle dynamics in
this framework is of particular interest, because the underlying shock transmission channels

and the related policy implications are different under adaptive learning compared to the RE



framework, as we discuss further below.

The standard RE models come equipped with a perfect foresight assumption about regime
switches, which equates the objective expected durations of the underlying regimes with agents’
subjective expectations. This typically leads to short periods of anticipated ELB episodes:
DSGE models estimated on the U.S. economy report estimates of the expected ELB duration
over 2009-2016 ranging between 3 to 9 quarters,! whereas the empirical duration was 28 quar-
ters. The difficulty to generate plausibly long ELB durations may be seen as a shortcoming
of RE models as it imposes a form of non-rationality on the agents: since, in a given period,
they expect to leave the ELB regime soon, they are constantly surprised during the 28 quarter
period without ever revising their belief models for an extend period. Our paper makes this
non-rationality explicit with the introduction of learning, which allows us to generate more
realistic ELB durations that can match the data.

Since there is scant research on misspecified expectations and adaptive learning in regime
switching environments, we start with an introductory example using a 1-dimensional Markov-
switching model of the Fisher equation and study it under adaptive learning. In this limited
information framework, we derive the corresponding equilibrium and expectational stability
(E-stability) conditions.? Of particular interest is the result that the model as a whole remains
E-stable even if one of the underlying regimes is E-unstable, as long as this regime is sufficiently
short-lived. We call this the Long run E-stability principle, in parallel to the Long-run Deter-
minacy of Davig & Leeper (2007) used in Markov-switching RE models. We then illustrate this
concept in a skeleton version of the baseline New Keynesian model, where the pegged interest
rate rule during the ELB regime leads to indeterminacy in a RE setup, and E-unstability in
the adaptive learning framework. In both cases, ensuring that ELB durations are short-lived
or that the Taylor rule during normal regimes is sufficiently strong, is enough to achieve overall
stability.

After studying the theoretical properties of this modeling framework, we introduce a variant
of the Kim & Nelson (1999) filter to estimate the class of Markov-switching DSGE models under
adaptive learning, both with exogenous and endogenous regime switching. Applying the filter
for the Bayesian estimation of the Smets-Wouters (2007) model yields the following results: the
adaptive learning models with regime switching in the monetary policy rule typically outperform
the standard RE model (with or without switching in the policy rule) in terms of marginal
likelihood under a variety of learning rules. More importantly, we observe systematic differences
in the impulse response and shock propagation structure of the models under consideration. In

particular, we find that impulse responses move in the same direction under learning and RE

1See e.g. Lindé et al. (2017); Ji & Xiao (2016); Chen (2017), among others.

2E-stability refers to the stability of model dynamics under adaptive learning. When the stability conditions
hold, the learning dynamics converge to an ergodic distribution around the underlying equilbirium, whereas a
violation of E-stability conditions results in divergent and explosive learning dynamics.



when the economy switches from the normal to the ELB regime, but the magnitudes of change
under learning models tend to be smaller. This suggests that RE models may overestimate the
impact of the ELB on shock propagation. A side-effect of this result is that RE models may
exaggerate the size of fiscal multipliers over this period.

We also consider a number of counterfactual experiments to discuss the effects of learning
over the ELB period. We find that simulations under learning typically result in ELB dura-
tions longer than the empirical duration of 7 years for the U.S. economy, with values of average
inflation and output growth lower than their empirical counterparts. We observe a positive cor-
relation between the ELB duration and the speed of learning (i.e. the constant gain coefficient),
where stronger learning dynamics increase the probability of prolonged ELB durations and de-
flationary spirals. This result emphasizes the importance of keeping private sector expectations
anchored through unconventional policy measures such as forward guidance.

The paper is organized as follows: Section 2 illustrates the main concepts in a simple
Fisher equation framework with one-forward looking variable. Section 3 provides the general
higher dimensional setup, the estimation methodology and the learning rules that we use in our
empirical exercise. Section 4 discusses the estimation results for Smets-Wouters (2007) model,
the stability dynamics and some counterfactual experiments with the learning models. Section

5 concludes.

Related Literature

Various approaches have been used in the literature to model the ELB constraint. Some re-
searchers use a perfect foresight & endogenous duration approach, which allows for a joint
determination of expectations and regime switches; see e.g. Maih (2015); Lindé et al. (2016,
2017); Kulish et al. (2017). Another method which is more common in VAR-literature is to
use a threshold-switching method, where the economy is assumed to be in the ELB regime if
interest rates fall below some pre-specified level, see e.g. Bonam et al. (2017). A final approach
is to use a Markov-switching framework, where the presence of the ELB regime is determined
by its predictive density, see e.g. Binning & Maih (2016). Lindé et al. (2017) show that Markov-
switching and endogenous duration approaches typically lead to similar results as long as the
ELB constraint is accounted for. In this paper, we use the Markov-switching (MS) approach
to model the ELB constraint.?

In parallel to this, there is a vast and growing literature on the empirical validation of

3 Aside from the ELB episode, MS approach recently gained popularity in DSGE literature to model structural
changes such as monetary policy switches or volatility breaks, see e.g. Sims & Zha (2006), Davig & Leeper (2007),
Sims et al. (2008), Liu et al. (2011), Liu & Mumtaz (2011), Bianchi (2016), Bianchi & Ilut (2017) and Bianchi
& Melosi (2017) for some of the recent work. Other related work includes Bullard & Duffy (2004) that studies
learning about unanticipated structural change in productivity in an RBC framework, and Hollmayr & Matthes
(2015) that studies consequences of fiscal policy shifts when agents have uncertainty about the switch.



adaptive learning in DSGE models, as well as monetary and fiscal policy implications of adaptive
learning, see Evans & Honkapohja (2012) for a textbook treatment and Woodford (2013) for
a comprehensive review of the more recent work. Much of the earlier literature on adaptive
learning focused on the learnability of Rational Expectations Equilibria and MSV-learning,
focusing on small and temporary deviations from perfect foresight models. Milani (2007) and
Eusepi & Preston (2011) are earlier examples of expectations-driven business cycles and how
MSV-learning can improve the empirical properties of small-scale DSGE models, while Bullard
& Mitra (2002) and Bullard & Eusepi (2014) examine monetary policy implications of this type
of learning.

In more recent work, Slobodyan & Wouters (2012a) and Slobodyan & Wouters (2012b)
show that further deviations from perfect foresight models with the use of small forecasting
rules can lead to further improvements in the fit of a medium-scale DSGE model. On a similar
vein, Quaghebeur (2018) examines fiscal policy implications of a VAR-type adaptive learning
rule and finds that government spending multipliers are larger under adaptive learning. Evans
et al. (2008) and Evans & Honkapohja (2010) examine the implications of adaptive learning for
fiscal policy.

While Markov-switching and adaptive learning have both been increasingly popular classes
of time-varying DSGE models in recent years, there is little work on DSGE models that con-
sider a combination of both approaches. Closely related theoretical work includes Branch et al.
(2013) that studies the properties of MSV-learning in Markov-switching models where agents
are informed about regime switches but learn the remaining economic parameters; and Airaudo
& Hajdini (2019) that studies equilibria in a Markov-switching framework where agents use an
optimal AR(1) rule without accounting for regime switches. Empirical studies closely related
to our work include Gust et al. (2018) that examines the ELB episode and forward guidance in
a Markov-switching setup under Bayesian learning, where agents are aware of regime switches
but have to infer about the underlying regime of the economy; and Lansing (2018) that ana-
lyzes the ELB episode in a calibrated setup under adaptive learning where regime switches are
unobserved. Our key difference from these empirical papers and one of our key contributions is
to extend their framework to non-rational beliefs, and to estimate the resulting DSGE models
during the ELB episode.

Farmer et al. (2009, 2011) explore a class of Rational Expectations Equilibria (REE) in
Markov-switching models. Since we assume that regimes are never observed, an equilibrium
concept in our framework does not coincide with a Rational Expectations Equilibrium in the
sense of Farmer et al. (2011). Instead, our approach is a Restricted Perceptions Equilibrium,
(RPE), where agents’ model misspecification permanently keep the economy away from the
underlying REE.



2 Preliminaries

2.1 Fisher Equation and Long-run E-stability

In this section, we discuss and clarify some dynamic properties and stability conditions that
apply to our modelling approach. We start with a minimal setup that establishes the connection
to the previous literature and allows for an analytical discussion of the problems. We then apply
the concepts to the more general setup that is applied in the rest of the paper. Consider first

a simple model of Fisherian inflation determination without regime switching:

1y = Eymiq + 1y,
Ty = pri_1 + vy, (2.1)

Z't = QT

where 7, is the exogenous AR(1) ex-ante real interest rate, i; is the nominal interest rate,
is inflation, and v; is an IID shock process. We assume that monetary policy follows a simple
rule by adjusting nominal interest rate to inflation, denoted by a.* After eliminating nominal

interest rate i;, the system can be re-written as:

T = é(EtWt-H + 1), (2.2)

Ty = Pre—1 + Ut

We use this small setup as our starting point as it has been extensively analyzed in Davig &
Leeper (2007), which is one of the first studies on expectations in a regime switching setup; as
well as in Airaudo & Hajdini (2019), which is the first study on small forecasting rules in a
regime switching setup. The standard Minimum State Variable (MSV) REE solution takes the
form of:

= dry. (2.3)

In terms of adaptive learning terminology, (2.3) is known as the the Perceived Law of Motion
(PLM). The Rational Expectations Equilibrium (REE) value of d is pinned down by iterating
the PLM forward to obtain the one-step ahead expectations, plugging the expectations back
into the actual law of motion (2.2) and computing the associated fixed point, which yields
d= %_p. Hence the law of motion under REE is given by 7, = %_pﬁ- In this benchmark case,
the equilibrium is determinate if & > 1, i.e. if monetary policy is sufficiently aggressive.

Davig & Leeper (2007) consider scenarios where the interest rate reaction parameter « is subject

to exogenous regime switches. Focusing on a two regime environment, assume that o changes

4For the remainder, we assume that Var[r;] = 1 to simplify the exposure.



stochastically between two regimes, s, = {1,2} subject to the transition matrix:

P11 1—pn
Q - ( > .
1 — p2o D22

Then inflation dynamics are given as:

_ 1
Tt = alse) (Eimen + 1), (2.4)

T = Pri—1 + Uy,

with a(s; = 1) = ag and a(s; = 2) = ay denoting the regime-specific parameters. Using

mit = m¢(s; = i), we can rewrite the model in a multivariate form:

a; 0 T By r
1 Lt| _ P11 P12 t7T1 41 i t ‘ (2.5)
0 | |72y P21 D22l | Eimoii1 T

In a REE framework, the presence of regime switches and the corresponding transition matrix

@ is known to agents. Denoting by d; the regime-specific REE solutions, the corresponding

regime-dependent 1-step ahead expectations are given by:

Eymigal|se = 1] = (p1ndy + prada) pry,
Eymiia|se = 2] = (pardy + pasds) pry.

In other words, agents hold two distinct laws of motion associated with each regime, and they
correctly form their expectations after observing the current regime s;. Davig & Leeper (2007)
show that, in this setup, the equilibrium is determinate as long as the long-run Taylor principle
(LRTP) is satisfied:

Q10 > 1 - ((1 — Oéz)pll + (1 — Oél)pgg). (26)

A key insight of this principle is that, the long-run dynamics of the model are determinate
even if one of the underlying regimes is indeterminate, provided there is at least one regime
that is sufficiently determinate or the probability of entering into the indeterminate regime is
sufficiently small. In what follows, we first relax the assumption of full information to replace
it with that of learning, and then we extend the long-run determinacy insight into the concept
of learnability, i.e. E-stability of equilibria.

Our main deviation from the REE framework is that agents do not directly observe or
take into account the regime shifts that occur in the economy when forming their expectations.

Instead, they hold period-specific expectations that are updated each period as new observations

5See Appendix A for further details on the derivation of this condition.



become available. Regime switches are unknown to agents ex-ante, and only affect agents’
expectations ex-post after new observations become available.

Before introducing adaptive learning, it is useful to first study the equilibrium properties
of this setup and compare it with the REE counterpart. Assume that the economy evolves
according to (2.4) with two monetary policy regimes, where agents do no observe the regime

switches. Their regime-independent PLM and 1-step ahead expectations are given as follows:
Tt = d?“t = Etﬂ-t-i-l = dEtTt+1 = det, (27)

where d denotes the agents’ perceived coefficient. The implied Actual Law of Motion (ALM) is
then given by:

D
Tt = a0 (dp + 1)7% (2.8)

Ty = Pri—1 + V.
The assumed form of PLM here does not nest the regime-dependent REE solution. Therefore,
any resulting notion of equilibrium under this scenario cannot coincide with the full-information
REE. Instead, we refer to the resulting equilibrium as a Restricted Perceptions Equilibrium
(RPE), where agents use a restricted and misspecified information set when forming their
expectations.f”

In order to identify an RPE, we follow Hommes & Zhu (2014) and impose a moment con-
sistency requirement on the model to pin down the value of d associated with the equilibrium:
the coefficient d determines the perceived correlation between inflation and real rate of interest
in agents’ PLM, ie. d = ?[::::]] ?ﬁ:ﬂ
the ALM is equal to d. In other words, agents’ forecasting rule is consistent with the actual

In an RPE, the unconditional correlation

implied by
outcomes on average, but it is misspecified along each regime. The associated unconditional
moment in our example is given as:

Elmry] 1 1
Elrgr] E[a(st)dp + a(sy)

], (2.9)

which involves the long-run distribution (i.e. ergodic distribution) of the Markov chain de-

noted by P. Given the transition matrix @), this follows P = [2—;?321)22’ 2_;;’2;22].8 Then the

6See (Evans & Honkapohja, 2012) for an overview of Restricted Perceptions Equilibria in the adaptive learning
literature.

"In this section we limit our attention to a misspecification related to regime-switches only, while the PLM is
otherwise correctly specified. In our empirical exercises, we also allow for misspecification in the forecasting rule.
See Airaudo & Hajdini (2019) for theoretical properties of such an example, where two types of misspecification
are combined with an AR(1) forecasting rule.

8Note that the ergodic distribution is obtained by solving P'Q = P.



underlying RPE coefficient, which we denote as d®F¥ | is given by’

JRPE _ a1(1 = paa) + az(l — pi1)
@1042(2 — P11 — ng) - 0041(1 - p22) - ,0042(1 —pn).

(2.10)

Further note that, the regime-specific REE solutions (i.e. the solution when the economy is
always in regime i) are given by d; = %—w i € {1,2}. In this special case, the underlying RPE is
essentially a weighted average of the regime-specific equilibria, where the weights are determined
by the long-run distribution of the regimes. Instead of the standard determinacy condition of
REE models, our main concept of interest in this case is E-stability.! The E-stability principle
determines whether the agents can learn an equilibrium around the fixed-point d**'F by starting
from an arbitrary point dy, and updating their beliefs about the coefficient each period using
a recursive system as new observations become available. As shown in Evans & Honkapohja
(2012), E-stability is governed by the mapping from agents’ PLM to the implied ALM, defined

as the T-map. In our example, the T-map is given by:

S

[7i7¢]

a1 (1 — pag) + (1 — p11)
E[Tﬂ"t] '

T:d—T(d) =
” ( ) 041042(2 —p11p22)

= (dp+1) (2.11)

The T-map is locally stable if its Jacobian matrix has roots with real parts less than one. When
the local stability condition is satisfied, the equilibrium is E-stable. Applying this to our RPE,

the associated root and the E-stability condition are given as:

DT(d) _ (1 — paa) + (1 — p11)
D(d) a102(2 — pi1 — pa2)

p <1, (2.12)

which, after re-arranging, yields:

1-— 1-—
QLo > a ( P22) + aia pn). (2.13)

2 —pn —p2

This results in a criterion similar to that of LRTP. In order to obtain E-stability, a more
aggressive monetary policy rule «; is needed whenever (i) the average time spent in regime
1 (given by Py) decreases, (ii) the average time spent in regime 2 (given byP;) increases, or
(iii) the monetary policy rule in regime 2 (a) becomes less aggressive. This suggests that
overall E-stability holds even if one of the underlying regimes is E-unstable, as long as there
is a sufficiently E-stable regime and the system does not spend too much time in the unstable
regime on average. This is an intuitive extension of Davig & Leeper’s insight on long-run

determinacy to the learnability of equilibria, therefore we denote this as the principle of long-

9See Appendix B.1 for details on the derivation of this condition.
10Bullard & Eusepi (2014) shows that there is a tight link between determinacy and E-stability of REE and
in some special cases these conditions may even coincide.



run E-stability.

2.2 Regime Switches and Constant Gain Learning

The RPE concept and its associated long-run E-stability condition in (2.10) serve as a starting
point to illustrate the model dynamics in our framework, and to draw parallels to previous work
under REE. Building on this, our main point of interest in this paper is to study the transitory
dynamics under adaptive learning when there is a monetary policy regime switch.

We first extend the model (2.10) with lagged inflation in order to also study learning dynam-
ics about persistence. Assume that a fraction ¢, of agents have backward-looking expectations
based on the previous period, while the remaining fraction 1 — ¢, form their expectations ratio-

nally as before. This yields the following model:

( ~
i = Eymq + oy,

EﬂTtH = 1M1+ (1 — tp) Eyisa, (2.14)

Ty = pri—1 + vy,

kZ’t = Oé(St)Wty
where E, denotes aggregate expectations operator and E, refers to the Rational Expectations

as before. Assuming again that agents’ do not observe the regime switches, the associated PLM

of the rational agents is of the form:*!

T = th + bﬂ-t—h (215)

with the associated T-map:

d El(my — b(sy)m—1)rs
(b) - ( [g[(“t—d(it)i)ﬂtﬂ) ]> ) (2,16)

Elrf]

L 1—up)dp+1
where b(s;) = z=54——; and d(s;) = —aﬁst)leffpw”

Next we introduce adaptive learning into this system, where beliefs about d and b are

updated each period as new observations become available, using a constant-gain least squares

1We assume that rational agents take into account the presence of backward-looking agents when forming
their expectations.

12With the addition of lagged inflation, the moments appearing in the above expression become analytically
intractable, therefore the values a®FF and b#PF and the associated E-stability conditions are obtained nu-
merically in the examples below. The derivations of the RPE and regime-specific equilibria can be found in
Appendix B.3 for a general N dimensional system with m regimes. The example illustrated here is a special
case of 1 dimension with 2 regimes.

10



method a la Evans & Honkapohja (2012). Denoting by 6 = [d, b]" and y; = [ry, m—1]’, the agents

update their regression model (i.e. the coefficients in their PLM) using;:

Ry = Ry +7v(y; — Ri—1),

(2.17)
0, =01+ ’th’lyt(m — 01y,

where v denotes the gain value, i.e. the weight that agents put into the most recent observa-
tion. A constant gain implies geometric discounting of the past and allows agents to put more
weight into recent observations, thereby allowing them to potentially detect the consequences
of regime switches. We first illustrate the model dynamics for a parameterization where both
regime-specific MSV-solutions, as well as the underlying RPE are E-stable. Figure 1 shows two
simulations with different gain values and transition probabilities. Panel (a) is an example with
frequent regime switches, p;; = pao = 0.9, and a small gain value of 0.005. In this case the
learning coefficients oscillate around the RPE-consistent values, illustrating the stability of the

dRPE

system. An interesting feature of the RPE is that, while is between the regime-specific

bRPE g larger than both regime-specific values. This suggests that RPE

equilibrium values,
is not always a simple weighted average of the underlying regime-specific equilibria, and that
regime-switching may induce persistence amplification in the system.

Panel (b) shows an example with more persistent regimes, p;; = pay = 0.99, and a larger
gain value of 0.01. It is readily seen that when the gain value is sufficiently large and the regime
durations are long, the system converges to the regime-specific values, i.e. agents forget about
the past regime switches. When the regime shift occurs, there are two possible outcomes for
the learning dynamics: if the RPE and the new regime specific value are in the same direction,
as in the case for d;, then the learning process gradually moves towards the direction of the new
regime. If the RPE and the new regime specific value are in different directions, such as for b; in
this example, then the learning process first jumps in the direction of the RPE, before starting
to gradually move towards the regime specific value. This figure illustrates that, under the right
circumstances with large enough gains and frequent regime shifts, transitioning from one regime
to another may be characterized by a period of temporarily amplified persistence. Importantly,
this suggests that learning of the new regime can be very quick, especially when exiting a very
long regime or entering into a new regime that has not been observed before. These results
are in line with Hollmayr & Matthes (2015), where unanticipated structural change leads to a
temporary period of fast learning and amplified volatility. In our framework, this phenomenon
occurs as a temporary shift towards the RPE.

The characteristics discussed above are particularly important from an empirical viewpoint:
the recent ELB episode is similar to such a switch from a persistent regime to a new regime

that was not experienced in the recent past. This is discussed in further detail in Section 4 in

11



the context of the Smets & Wouters (2007) model.

1.4 ——RPE
-R1
1.2 e
1t
bt
0.3/
0.25]
0.2}
015 [ ULL L LU L L A0
(a) Y= 0.005,]911 = P22 = 0.9. (b) Y= 0-01,1911 = P22 = 0.995.

Figure 1: Learning coefficients along with the RPE-consistent and regime-specific values. The param-
eters ¢, = 0.25,p = 0.9, a1 = 1.5, g = 2, are fixed in both simulations. Given the values of a; and ao,
both regime-specific equilibria and the RPE are E-stable.

2.3 Mean Dynamics

We next consider an extension with the mean dynamics. In the previous two examples, ex-
pectations about the mean are implicitly fixed at the equilibrium value of zero and as such,
expectations are anchored at the equilibrium. Learning about the mean dynamics introduces a
possibility of de-anchoring from the equilibrium, and can therefore be interpreted as an example
of imperfect anchoring as in Busetti et al. (2014).

To motivate the learning dynamics about the mean, we assume that nominal interest rates
react to deviations of inflation from its non-zero target rate 7, i.e. iy — 7 = a(s;)(m; — 7). This

yields the following model:

( ~
iy = Eymq + oy,

E{ﬂ'ﬁ.l = LpT—1 + (1 - LP)Etﬂ-H‘h (2 18)

Ty = pri—1 + vy,

\it -7 =a(s)(m —7),

12



where the rational agents’” PLM is given by:
Ty = a + b7Tt71 -+ d?}, (219)

and the T-map:
E[(m — b(s¢) Xi—1 — d(s¢)er)]

b| — [l : (2.20)
E[(mi—a(st)d(se)re)me—1]
El[r]
: a(sy) —1)7+(1—tp)a Lp _ (I=up)dp+1 . :

two simulations using the same parameterization from before with 7 = 2, where both regime-
specific equilibria and the RPE are E-stable. Panel (a) again shows frequent regime switches
with a small gain value, while Panel (b) shows infrequent switches with a larger gain. We

RP

observe that in this case, a** is lower than both regime-specific values, which confirms our

result from the previous section that the RPE may not always be a simple weighted average

of the regimes. The lower value of a®F

suggests that the perceived inflation target is lower
under RPE than both regime specific values. While we observe oscillations near the RPE in
the first simulation, the second one jumps to the RPE along with regime switches, followed by

a gradual movement towards the regime-specific values as the regime persists.

- 1.5 e 1 Co——p
—HPE4 ——RPE

(a) v = 0.001,p11 = paz = 0.99. (b) v =0.005, p11 = p22 = 0.999.

Figure 2: Learning coefficients along with the RPE-consistent and regime-specific values. The param-
eters T = 2,1, = 0.25,p = 0.9,01 = 1.5, a9 = 2, are fixed in both simulations. Given the values of o
and ag, both regime-specific equilibria and the RPE are stable.
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2.4 Effective Lower Bound and Regime-switching

Having illustrated the main concepts, in this section we establish the link between the ELB
constraint and the regime-switching setup. We use a deterministic version of the baseline

3-equation New Keynesian model. Consider the standard Euler and Phillips curve equations:

Ty = By — U(it - Eﬂt+1)7 (2 21)

m = PET + Ky,

with z; output gap and 7; inflation, supplemented with a standard Taylor rule for monetary
policy subject to the ELB constraint: i, = maz{¢,m + ¢.xy, —r*}. In this section, we take
r* = 0 without loss of generality and refer to it as the zero lower bound (ZLB) constraint, while
the empirical applications in the next section allow for non-zero values of 7*. The monetary

policy rule is approximated as a Markov switching process:'?

it = Gr(Se)T + Ou(S) 24, (2.22)

where the nominal rate ¢; switches between two regimes: the first one takes the form of an
active Taylor rule with ¢.(s; =T) > 1 and ¢,(s; = T') > 0, which is the normal regime when
the ZLB constraint is not binding. The second one follows a pegged interest rate rule with
¢x(sy = ZLB) = 0 and ¢,(s; = ZLB) = 0 when the ZLB constraint is binding. Similar to the
previous sections, we assume transition probabilities py; (for the normal regime) and poy (for
the ZLB regime), implying ergodic probabilities of P; = 2711;1—}’322 and P, = %;—pfm.

A well known result in the literature is that, when monetary policy is inactive, which
corresponds to the ZLB regime in this setup, standard New Keynesian models are indeterminate
and the learning dynamics are E-unstable under plausible parameterizations,'* which leads to
the possibility of deflationary spirals. In what follows, we establish this result in our regime-
switching framework.

Denoting by Y; = [z, 1], the system can be re-written as Y; = I'(s;)E,Y; 11 with T'(s;) =

| 1 o(l=PBoa(st))
Lrode(se)trodn(s:) <,<; ko + B(1+ a¢.(s:))
tion (where agents ignore the presence of regime switches) takes the form of Y; = a, that is,

). In this simplified form, the associated law of mo-

agents only learn about the means. The implied law of motion is then given by Y; = I'a, and
the corresponding T-map is:

a— T(a) = El'(s)al. (2.23)

13See e.g. Binning & Maih (2016), Chen (2017) and Lindé et al. (2017) for earlier work, where the ELB period

is analyzed in a regime-switching framework.
l4see Evans & Honkapohja (2010) for a detailed treatment.
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Recall from Section 2.1 that the long-run E-stability condition is satisfied if the real part of the
largest root associated with the T-map does not exceed unity. Denoting the real part of the
largest root by p(s;) for each regime s;, the long-run E-stability condition is satisfied in this
case if the weighted average Pip(s; = T') + Pyp(s; = ZLB) is inside the unit circle. Figure 3
illustrates the E-stability region for the RPE as a function of the ZLB exit probability 1 — po
for a standard parameterization. First looking at the regime-specific roots, we observe that the
E-stability condition always holds for the normal regime, while the ZLB regime is E-unstable.
The E-stability of the RPE depends on how much time the system spends at the ZLB regime
on average (i.e. the ergodic probability), which in turn is determined by the exit probability
from the ZLB regime. We observe that, for the given parameterization, exit probabilities below
5% (which translates into an average of 16.6% of all periods at the ZLB) result in an RPE that
is E-unstable. Hence the system becomes E-unstable if it spends too much time at the ZL.B
regime on average: this corresponds to the threshold, after which deflationary spirals with ever

falling output gap and inflation become dominant.'®

115 _________ g g = e |

f

I
Largest Root ZLB Regime
(E-unstable)

11 7

Largest Root RPE

E-stability Boundary -

|

0.95F / ]

Largest Root Normal Regime (E-stable)

1.05

0 0.1 0.2 0.3 0.4 0.5

Figure 3: Largest roots for regime-specific equilibria and RPE in the New Keynesian model as a
function of the ELB exit probability 1 —pos. We use a standard parameterization with ¢ = 1, § = 0.99,
k = 0.02, p11 = 0.99. This parameterization closely follows Arifovic et al. (2018). The Taylor rule
coefficients in the normal regime are ¢, = 1.5 and ¢, = 0.5. The grey area corresponds to the region
where the E-stability does not hold for the RPE.

This example is useful for illustrating the potential E-unstability of the ZLB regime. These
initial results imply that spending too much time in the ZLB regime relative to the normal

regime can destabilize the economy. However, the transition probabilities are exogenous in this

5Further details about the derivations, and a small extension with exogenous AR(1) shocks can be found in
Appendix B.4.
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example and as such, it does not provide an insight on how the economy exits the ZLB. Indeed,
if the ZLB regime is associated with worsening macroeconomic conditions, the economy may
be stuck at the ZLB regime by giving rise to deflationary spirals and a falling output, which
makes it harder to leave the ZLB. We explore such cases in Sections 4 and 4.6 with endogenous
switching models, where the transition matrix () is time-varying and dependent on the nominal
interest rates implied by the Taylor rule. In the next section, we first present the general

multivariate setup and discuss the empirical methodology.

3 General Setup and Estimation

This section introduces the general calss of linear multivariate models, subject to regime

switches and adaptive learning. Consider the following data generating process:

Xi = A(s) + B(s1) X1 + C(s1) By Xop1 + D(s1)e, (3.1)

€ = PE€—1 + M,

where X; denotes the state-variables that may depend on their lags X, i, 1-step ahead expec-
tations F; X, and the structural shocks ¢;. We assume the exogenous shocks follow a general
VAR(1) process with matrix p, while the matrices A, B, C, D and FE contain the structural
parameters of the model. A subset of the structural parameters are subject regime switches,
captured by s;.'% The corresponding PLM of agents are period specific but independent of

regime switches, given by:

X =a 1 + b1 Xoo1 +dire, (3.2)
E Xy =ai 1+ b1 Xy + (di_1p)ey,

where we use a period t dating assumption for expectations, i.e. the structural shocks and
contemporaneous variables are jointly determined with the 1-step ahead expectations.'” The
PLM parameters a;_1,b;_1 and d;_; are updated after the state variables are realized, hence
they enter into (3.2) with a lag. The above specification conveniently nests all PLMs that we
use in our estimation exercises, which is discussed below. Plugging the expectations in (3.2)
back into (3.1) yields the implied ALM:

X = A(st) + B(s1) Xi—1 + C(se)ar—1 + C(8¢)bi—1. Xy + (C(8¢)(di—1p) + D(s¢) )€, (3.3)

16Note that we abstract away from regime switches in the structural shocks here without loss of generality.

17The alternative is to use period t-1 dating, which assumes a sequential timeline where expectations are
determined based on period t-1 information, after which period t shocks and contemporaneous variables are
determined. The results reported in the paper are not sensitive to this assumption.
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which can be re-written as:
Xt = at,l(st) + bt71<8t)Xt,1 + dt,l(st)et, (34)

with a(s;) = (I — C(s¢)bi_1) "(A(st) + C(s)as_1),b(s;) = (I — C(s4)by—1) ' B(s;) and d(s;) =
(I —C(s1)bi—1)"H(C(s:)(ds—1p) + D(5¢)).'"® Denoting by ®; = [as, ds, b)) and Y; = [X;_1, ¢, the

coefficients in agents’ PLM are updated using constant gain recursive least squares:

Ry =R +v(YY) — Ri—4),

(3.5)
Dy =Py + YR Y (X — @Y

The system is characterized by two types of time variation, which can be written in the following

compact state-space form:

S =0 A S A e me~ N(0, %), (3.6)

with S; = [X], €] and *y(()fgt,fy%)t and fyéf&,)t conformable matrices in terms of structural param-
eters, which depend on the assumption of the PLM. We next discuss the estimation of this

general model in (3.6).

3.1 Estimation

The standard filtering algorithm for Markov-switching state-space models is the modified Kalman
filter by Kim & Nelson ( henceforth KN-filter): in a Markov-switching model with m regimes,
a dataset of size T leads to mT possible timelines, which quickly makes the standard Kalman
filter intractable as T grows. The main idea in the KN-filter is to introduce a so-called collaps-
ing technique to deal with this issue, which amounts to taking weighted averages of the state
vector and covariance matrix at each iteration of the filter. This effectively reduces the number
of timelines at each iteration by an order of m, thereby making the filter tractable for large
values of m and T'. The standard recommendation for collapsing is to carry as many lags of the
states as there are in the transition equations, therefore we consider a version of the filter with
a single lag. Accordingly, if there are m different regimes in the model, we carry m different
timelines in each period. This introduces m? different sets of variables in the forecasting and
updating steps, which are collapsed at the end of each iteration to reduce the system to m sets
of variables.

An important question is how to introduce adaptive learning into this framework. We use

18 Appendix B.3 provides the first and second moments that appear here for a general setup with m regimes.
In this general framework, the values associated with the equilibrium intractable. Therefore the E-stability of
a given model can only be assessed via Monte Carlo simulations.
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an approach that is consistent with the theoretical framework of the previous section: the
agents have a unique PLM based on observables, independent of the regime switches. We
model this formally by collapsing the m different states further at each iteration to obtain the
final states estimated by the filter, which are used for the adaptive learning step. The unique
learning coefficients are then used in each Kalman filter timeline of the next period’s iteration.’

Adding a set of measurement equations to (3.6) yields the state-space repsentations:

Sy = %q,ﬁrvmtst 1+7§¢)tm, ;1 ~ N(0,%)
:E+FSt,

(3.7)

for a set of observable variables 1,.2° The filter yields the likelihood function as a side-product,
which is combined with a set of prior distributions for Bayesian inference. Importantly, the
filter is flexible enough to accommodate both exogenous and endogenous regime transition

probabilities, and we discuss both versions in Section 4.

3.2 Initial Beliefs

A first practical issue in empirical studies on learning is how to initialize the beliefs. Initial
beliefs have been shown to play a key role in driving the estimation results and model fit in
previous studies, and various different approaches have been considered: Milani (2007) uses an
estimation-based approach, where the initial beliefs are treated as free parameters and estimated
jointly along with the other structural parameters of the model; Slobodyan & Wouters (2012a,
2012b) consider REE-based and training-sample based approaches along with the estimation-
based approach; while Berardi & Galimberti (2017¢) proposes a smoothing-based approach.
A common result in these studies is that the results are generally sensitive to initial beliefs,
and the best-fitting approach depends on the specific model under consideration; see Berardi
& Galimberti (2017a, 2017b) for a detailed overview on initial beliefs.

Our goal in this paper is to take a minimal deviation from the REE framework and therefore
we follow the approach in Slobodyan & Wouters (2012b) with REE-based initial beliefs. Ac-
cordingly, for each parameter draw, the REE of the model is computed as a first step.?! Then

the relevant moments from this equilibrium are used as initial beliefs for the learning models.

19 A natural alternative here is to apply the adaptive learning step distinctly to each collapsed state; one
can then take a weighted average of these expectations to obtain the filtered expectations Our results in the
upcoming sections are not sensitive to such an alternative, but we only present the results under the first
approach since it is more in the spirit of our theoretical framework.

20g5ee Appendix C for details on the filter.

21Since the initial 40 years of our sample is governed by an active Taylor rule, we use the REE solution
consistent with the normal regime.
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3.3 Projection Facilities

A second issue with the estimation of adaptive learning models relates to projection facili-
ties. A well-known issue with constant gain recursive least squares is that the stationarity of
the underlying models is not always guaranteed. Particularly when the PLM involves lagged
state variables, the learning process may occasionally push the system into non-stationary and
explosive regions, even if the underlying equilibrium is E-stable.??

A common method in the adaptive learning literature to deal with these potential instabil-
ities is to impose a projection facility on the model, which forces the model dynamics to be
stationary by projecting the learning coefficients into the stable region whenever instability is
encountered. The simplest approach is to leave the learning coefficients at their previous value
if the update leads to non-stationarity, which is the method adopted in Slobodyan & Wouters
(2012a). Specifically in our estimations, we set up the projection facility as follows: if the learn-
ing update pushes the largest root of the ergodic distribution associated with the model (3.6)
outside the unit circle in a period, then we stop updating the learning coefficients for that pe-
riod. In other words, we allow the regime-specific dynamics to be temporarily non-stationary as
long as the underlying implied ergodic distribution remains stable. Importantly, this approach
allows the agents’ PLM (3.2) to become temporarily explosive as long as the underlying ergodic
distribution is stable. This approach reflects our inclination to keep the projection facility as

inactive as possible.

3.4 Learning Rules

Our discussion about learning up to this point has been based on the information set consistent
with the MSV-REE solution, where the only source of misspecification is due to unobserved
regimes. However, in principle, any information set may be considered in the agents’ PLM. In
our estimation exercises, we will focus on three types of learning rules that have been frequently

used in the literature:

(i) An MSV-consistent rule as discussed before. For this rule, the limiting case with no
learning (7 = 0) corresponds to an equilibrium consistent with a REE of the normal

regime, where agents do not pay any attention to the potential ELB episodes.

(ii) A VAR-like rule, which assumes unobserved shocks but otherwise keeps the same set

of state variables as in the MSV solution.”® Chung & Xiao (2013) analyze a similar setup

22We do not explore the formal link between indeterminacy, E-unstability and the unstability due to updating.
However, since an inactive monetary policy implies indeterminacy and E-unstability for the regime-specific
dynamics, occasional escapes to non-stationary regions are more frequent when the ELB constraint is binding.

2In terms of (3.2), this assumes d is a zero matrix, but keeps the same b matrix as in the MSV solution.
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and define it as a Limited Information Equilibrium. Therefore we refer to this learning

rule as Limited Information Learning (LIL).

(iii) A parsimonious AR(1) rule, which ignores cross-correlations and assumes a univariate
process for each forward-looking variable.?* This type of univariate forecasting rules have
been applied in recent past to improve the empirical fit of otherwise standard DSGE
models, see e.g. Slobodyan & Wouters (2012b), Gaus & Gibbs (2018), Di Pace et al.
(2016) and Hommes et al. (2019).%

4 Estimation of the Smets-Wouters Model

4.1 Priors and Measurement Equations

In this section we estimate a version of the Smets-Wouters (2007) model under adaptive learning,
subject to the ELB. The details of the model are omitted here for brevity, see Appendix D for a
detailed explanation of the log-linearized model equations. We have two minor deviations from
the benchmark model: first, we assume the price and wage mark-up shocks follow exogenous
AR(1) processes, instead of the original ARMA(1,1) assumption.?® Second, we shut off the
flexible economy side of the model, which is used in the original model to obtain the potential
output and the associated level of output gap. Instead, we follow Slobodyan & Wouters (2012a)
and derive the output gap from the natural level of output, based on the underlying productivity
process. This has the advantage of reducing the size of the model, thereby making its estimation
computationally less demanding. The rest of the model, along with the prior distributions and
measurement equations remain unchanged. The monetary policy rule follows the same 2-regime

structure as in Section 2.4 with some additional parameters, given by:

it(se =T) = pir1 + (1 = p)(@rTt + Got) + Pac(Tt — Tp1) + 52157

(4.1)
ir(s; = ELB) = cFLP,

where ¢, and ¢, are inflation and output gap reaction parameters as before, while ¢, and p
are output gap growth reaction and interest rate smoothing respectively. €th denotes an AR(1)

monetary policy shock during the normal regime with persistence p, and standard deviation

ELB

¢~ 1s an L.i.d. policy shock process during the ELB regime with standard deviation

nT, while ¢

24In terms of (3.2), this assumes d is a zero matrix and b is diagonal.

25 A number of experimental studies also provide support in favor of small, parsimonious forecasting rules.
See e.g. Anufriev et al. (2019).

26This is due to the fact that, as shown in Slobodyan & Wouters (2012a), these shock processes are typically
close to being white noise when expectations are based on small learning rules, in which case the AR(1) and
MA(1) terms are close to being locally unidentified. Therefore we assume away the MA (1) terms in these shocks.
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nELB 27 The estimation is based on seven observables on the U.S. data over the period 1966:1-

2016:1V as follows:

d(log(y")) =3 + (Y — yi—1),

(log(
d(log(cf™)) =7 + (et — ci1),
d(log(inv®®)) = 7 + (inv, — inv,_y),
d(log(wi™)) =7 + (wy — we—1),
log(12%) =1 + 1,

(log(nf™)) = &+,

| (log(i2)) = i(s2) + ir

where d(log(y®*)), d(log(c?*)) , d(log(inv?®)) and d(log(w$**)) denote real output, consump-
tion, investment and wage growths with the common growth rate 4 respectively, while log(12°%),
(log(w?*)) and (log(i?**)) denote (normalized) hours worked, inflation rate and federal funds
rate respectively. We assume a regime switch in the steady-state level of nominal interest rates,
denoted by i(s; = T) =i’ and i(s; = ELB) = i¥LB respectively. We use quarterly data over
the period 1966:I to 2016:1V in our estimations.

We first discuss the estimation results for the exogenous switching models, for which there
are five additional parameters due to regime switching and learning that are not present in the
benchmark REE model. In terms of the regime transition probabilities, we estimate the exit
probabilities from the normal and ELB regimes, denoted as 1 —p;; and 1 — pyy respectively. We
use uniform priors over [0, 1] to assess how informative the data is about these two parameters.
This differs from previous studies in the literature where typically more informative priors have
been used, see e.g. Ji & Xiao (2016), Chen (2017) and Lindé et al. (2017), all of which use tight
Beta priors for the transition probabilities. For the constant gain parameter, we use a Gamma
prior with mean 0.035 and standard deviation 0.03, which follows from Slobodyan & Wouters
(2012b). This distribution permits a prior credible interval over the range [0,0.1] for the gain,

which is consistent with previous findings in the learning literature. For the standard deviation

ELB
T

0.03 and standard deviation 0.01. And finally for the steady-state level of interest rates at the

ELB regime, we use a normal distribution with mean 0.05 and standard deviation 0.025.

of monetary policy shocks of the ELB regime 7."“", we use a Gamma distribution with mean

The model features seven forward looking variables, namely the rental rate of capital rk;,
asset price q;, consumption ¢;, investment [, labor /;, inflation 7, and real wages w,; along with

seven AR(1) structural shocks, namely technology ¢,, government spending €+, risk premium

ELB

i in normal and ELB

€pt, investment-specific technology e7;, monetary policy 7, and e

2TThe presence of monetary policy shocks at the ELB is motivated by the fact that the nominal rates in the
U.S. were not constant during 2009-2016 but was rather characterized by small changes.
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regimes, and two mark-up shocks in prices ¢,; and wages €,,; respectively. Further, there are
seven state variables that appear with a lag in the model, namely, consumption ¢;, investment
I, output y,, inflation 7, real wage w;, nominal interest rate ¢, and capital k;. This translates
into a learning matrix of size 7x15 for the MSV model (intercept, lagged state variables and
shocks), 7x8 for the LIL model (intercept and lagged state variables) and 2x1 for each variable
in the AR(1) model (intercept and own lagged variable).

4.2 Posterior Results: Exogenous Switching Models

Using the KM-filter as discussed in the previous section, we first obtain the posterior mode of
the likelihood using standard optimization algorithms. The estimated mode is used to initialize
the MCMC to sample from the posterior distribution, for which we use a standard Random
Walk Metropolis Hastings with an adaptive covariance matrix for the proposal density. We
simulate two chains of length 250000 for each model under consideration, and the first 40%
of the chains is discarded as the transient period. The remaining 150000 draws are checked
for convergence using standard tests of Geweke (1992) within the chain, Gelman et al. (1992)
between the chains.

Tables 2 and 3 show the results for the three learning models, as well as the MS-REE model
and REE benchmark case. First comparing the (log-) marginal densities of the models, we ob-
serve that the Markov-Switching REE model (REE-MS) yields a substantial improvement over
the benchmark REE: based on the Modified Harmonic Mean (MHM) estimators of -1194 and
-1145, we obtain a Bayes Factor of 21.54 in favor of the Markov-switching model. Next com-
paring the learning models with REE-MS,?® we observe that all three learning models yield an
improvement over REE-MS, but to varying degrees: MSV-learning results in a small (and neg-
ligible) improvement, while the LIL and AR(1) models result in relatively large improvements.
The corresponding Bayes Factors relative to the REE benchmark are 21.97, 35.87 and 31.09 for
MSV, LIL and AR(1) respectively, which translate into Bayes Factors of 0.43, 14.32 and 9.55
relative to the REE-MS model. This indicates that, while the time-variation due to expecta-
tions under MSV-learning does not generate a meaningful improvement in the model fit, the
LIL and AR(1) models yield a further improvement over REE-MS. Among the three learning
models, LIL specification emerges as the preferred model based on the marginal densities.

The estimated parameters generally remain similar across REE and REE-MS models. The
differences between these models and the MSV-learning also remain modest. But when we

compare the REE and REE-MS models to the remaining two learning models of LIL and

281t is readily seen from Tables 2 and 3 that, while the Laplace and MHM estimators of marginal likelihood
result in similar values for REE and REE-MS models, there is some discrepancy between these two estimators
for the learning models. Therefore our discussion is based on the MHM estimator throughout the remainder of
the paper.
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AR(1), some notable differences emerge.

We start by discussing the estimated regime transition probabilities and gain parameters.
The exit probability from the normal regime, 1 — pyy, is similar across all four regime-switching
models. The posterior mean for this parameter oscillates between 0.99% and 1.14%, which
translates into an expected duration between 101 and 88 quarters. The HPD intervals for
this regime are overlapping across all models. However, the exit probability from the ELB
regime, 1 — pgy, turns out quite different between REE-MS and the learning models. The
REE model attaches a high probability to leaving the ELB regime: at the posterior mean, the
exit probability is nearly 30%, implying a short expected duration of only 3.3 quarters. For the
learning models, this number decreases to values between 3.8% and 6.6%, with implied expected
durations between 15 and 26 quarters, closer to the empirical duration of the ELB for the U.S.
economy. It is also important to note that the implied HPD bands under REE and all three
learning models for this parameter are mutually exclusive: the highest upper bound of the 90%
HPD interval across the learning models is 15.3% LIL model, whereas the lower bound for REE-
MS model is at 23%. This shows that the REE-MS model favors a low expected ELB duration
due to agents’ expectations. But since the model equates subjective and objective expectations
about leaving the ELB regime, this creates a trade-off between generating a short expected
duration on the agents’ part, and matching the empirical duration of the ELB episode. Over
the duration of the ELB period, this result suggests that the agents are constantly surprised as
the regime persists, since they expect to stay at the ELB for only 3.3 quarters. The learning
models, by breaking the tight link between subjective and objective expectations, allow the
model to generate a more persistent and realistic ELB duration.

The resulting filtered (one-sided) average regime probabilities for some of the key periods
are reported for all regime-switching models in Table 1.2 We observe some differences in the
estimated probabilities across models both during the entry and exit: in 2008Q3, the AR(1)-
learning and REE-MS models attach a 0% probability to the ELB regime, while this number is
34.6% for the LIL model, and 96.6% for the MSV-learning model. The probabilities increase to
67.1% and 91.8% in 2008Q4 for the AR(1) and REE-MS models, while they are at 98.5% and
and 99.9% for the LIL and MSV models. From 2009Q1 onwards, all models attach a probability
near 100% to the ELB regime until the end of 2015Q1.

Compared to the estimated entry probabilities, we observe larger differences around the
ELB exit dates. The AR(1) and REE-MS models imply that the economy exits the ELB
regime from 2015Q2 onwards, with probabilities near 0% until the end of our sample period. In
this case the LIL model yields similar results to these two models, with ELB regime probabilities
oscillating around 10% after 2015Q1. Compared to the other three, the MSV model yields a

29The probabilities are obtained by averaging 10000 runs of the filter, where the parameter draws are taken
from the last 20% of the MCMC simulations with a thinning factor of 0.2.
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different result, where the ELB regime probability stays close to 100% until the end of our
sample period. The observed differences in both the entry and exit result from the interest
rates implied by the Taylor rule during the normal regime. Recall that monetary policy reacts
to inflation and output gap during the normal regime. While inflation is an observed variable
(and thus it is common across the models), the output gap process is unobserved and estimated
differently in each model. As such, the differences in the estimated Taylor rule parameters, as
well as the differences in the filtered output gap processes contribute to the differences between
the estimated regime probabilities.

Among the learning models, the estimated gain parameter is smallest for the MSV-learning
model with a mean of 0.0012, and highest for the LIL model with a mean of 0.0064. Compared
to the LIL model, the AR(1) model yields a slightly lower gain with a mean of 0.005. These
values suggest that the MSV-learning model with the largest information set results in the
slowest update of learning coefficients, while the remaining two models generate comparable
levels of updating speed. The implications for the time-variation in the learning coefficients
will be discussed further in the next subsection.

Next we turn to shock and persistence parameters that mainly affect the autocorrelation
and cross-correlation dynamics in the model. Some parameters that have similar effects on
model dynamics are discussed in groups. The first of these groups is habit persistence A and
risk premium shock persistence p,, both of which generate persistence in consumption Euler
and the asset pricing equations. We observe that, on the one hand for REE and MSV-learning
models, habit persistence is lower with values of 0.75 and 0.76, compared to the other three
models with values between 0.78 and 0.85. On the other hand, for the low habit models, the
shock persistence is somewhat higher with values of 0.45 and 0.42, compared with the other
high habit models where the persistence varies between 0.25 and 0.34. Overall, all parameters
are within the HPD bands of each other, suggesting similar consumption and asset pricing
dynamics across all models.

Next considering wage dynamics, we discuss the wage stickiness &, wage indexation ¢, and
wage mark-up shock persistence p,,: these parameters mainly affect the wage setting dynamics,
and it is readily seen that all three parameters are estimated at similar values across REE,
REE-MS and MSV-learning models. In particular, we observe high degrees of stickiness varying
between 0.93 and 0.94, as well as high degrees of indexation varying between 0.79 and 0.82.
This is combined with low shock persistence values in the interval [0.07,0.12]. For the LIL and
AR(1) models, we observe similarly low levels of shock persistence with values of 0.14 and 0.1
respectively, but in these models we also obtain a lower wage stickiness with 0.82 and 0.76,
combined with a lower wage indexation with 0.67 and 0.55 respectively. This suggests that the
change in the information set from MSV-learning to LIL and AR(1)-learning results in more

persistence, which in turn yields smaller estimates for these friction parameters.
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Looking at the Phillips curve and inflation dynamics with a focus on price stickiness &,, price
indexation ¢, and price mark-up shock persistence p,, we observe a similar story compared to
the wage dynamics. The parameter estimates are similar across REE, REE-MS and MSV-
learning models with a price stickiness between 0.79 and 0.83, a price indexation between 0.1
and 0.11 and a shock persistence between 0.7 and 0.78. This suggests that the roles of shock
persistence and indexation change for these models compared to the wage setting dynamics.
For the LIL and AR(1) models, the price stickiness comes out similar to the other models with
0.79 and 0.74, while the price indexation is somewhat higher with 0.27 and 0.29. However, this
slightly larger indexation is offset by a substantially lower shock persistence with 0.08 and 0.05
respectively. Taken together, these parameters suggest that LIL and AR(1) models generate
more persistence internally through expectations, which reduces the reliance on the exogenous
persistence parameters.

Among the remaining shocks, we observe a similar difference in the estimated investment
shock persistence p;, which is lower under LIL and AR(1) models with 0.59 and 0.52, while
this number increases to values between 0.76 and 0.81 in the remaining models. Similar to
the inflation and wage dynamics, this suggests more internal persistence for the investment
dynamics under LIL and AR(1) models. Due to the differences in estimated persistence pa-
rameters, the standard deviations for risk premium and investment shocks, 7, and n;, turn out
higher under LIL and AR(1) models compared to the others. These larger standard deviations
make up for the lower persistence parameters in the two models, resulting in similar levels of
volatility for the corresponding AR(1) shock processes. Finally, the government spending and
productivity shocks are both similar across all models specifications in terms of persistence and
standard deviations: the productivity shock persistence p, varies between 0.94 and 0.98, while
the government spending shock persistence varies between 0.98 and 0.99. Similarly, the impact
of productivity on government spending, captured by pg,, varies between 0.5 and 0.53 across
all models.

In terms of the measurement equation parameters, we find that the estimated steady-state
of inflation 7 is somewhat lower under LIL and AR(1) models with 0.63 and 0.67 respectively,
while it is between 0.73 and 0.76 among the remaining models. This is due to the perceived
mean dynamics: for these two models, the perceived mean remains substantially above zero over
the estimation period, compared to the MSV-learning model where the perceived mean varies
very little prior to the crisis, and the no-learning models where the perceived mean remains
fixed at zero. For the remaining two parameters, the common growth rate 4 turns out similar
across all models with values between 0.38 and 0.41, while the steady-state labor [ yields large
difference across all models accompanied by wide HPD intervals, suggesting a large uncertainty
around the estimates for this parameter.

We do not observe notable differences in the remaining parameters. In particular, the
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monetary policy parameters are similar across all models, with HPD intervals well within the
range of each other. Inflation reaction ¢, ranges between 1.35 and 1.72 across all models,
while these number are [0.85,0.89] for interest rate smoothing p, [0.06,0.12] for output gap
reaction r,, and [0.14, 0.19] for output gap growth reaction rg,. Similarly, for Frisch elasticity
of labor supply Uil, we find values between 0.38 and 0.55, while for elasticity of intertemporal
substitution Gic, these values turn out to be 0.77 and 0.93. The posterior mean for capital
adjustment cost ¢ takes on values between 4.84 and 6.47 (with relatively large HPD bands, so
that none of the estimated HPD bands are mutually exclusive), while the share of fixed cost
in production ¢, oscillates between 1.53 and 1.64. Similarly, the capital utilization adjustment
cost Y remains at comparable levels across all models with values between 0.64 and 0.77, and
the share of capital in production « ranges between 0.17 and 0.19. The household discount
factor (3, defined as g = 1+1 ranges between 0.997 and 0.998, given the estimated values of 3.

B
the prior distribution, regaﬁless of the model specification and the assumed PLM.

he persistence of investment shock also becomes substantially smaller.

Date || Model

AR(1) LIL MSV  REE-MS
08Q2 || 0% 0% 0% 0%

08Q3 || 0% 34.6% 96.6% 0%
08Q4 || 67.1% 98.5% 99.9% 91.8%
09Q1 || 95.6% 98.9% 99.9% 99.3%
15Q1 | 99.6% 99.6% 99.9% 98.1%
15Q2 || 0.6%  9.4%  99.4% 0%
15Q3 || 1.2% 13.2% 98.4% 0%

Table 1: Estimated ELB regime probabilities during some of the important periods.
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4.3 Learning Coefficients

Our simulation analysis in Section 2 suggests that regime switches, combined with sufficiently
large gain values may lead to a jumping effect on some of the learning coefficients. In this section,
we discuss the implied time-variation in our estimated learning models and check whether
the jumping arises in some of the learning coefficients during the switch to the ELB period.
Among the seven forward-looking variables, we focus on three variables that are characterized
by relatively large changes during the crisis period and the subsequent switch to the ELB
regime, namely asset prices ¢;, consumption ¢; and investment I;. The general pattern is that
the learning coefficients are more sensitive and more to the ELB switch under the AR(1) and
LIL models, which is not surprising since the MSV model has the smallest estimated gain.
Further, we observe that the learning process reacts to the crisis through different coefficients
depending on the forecasting rule, which is discussed further below.

Figure 4 shows the perceived mean and persistence coefficients for the AR(1)-learning model,
along with the corresponding 90% HPD intervals.®® For all three variables, the perceived
means jump down immediately following the crisis, which is more pronounced for asset prices
and investment compared to consumption. For the perceived persistence parameters, there
are sizeable upward jumps for asset prices and investment, while for consumption there is a
smaller jump in the opposite direction. As such, the learning patterns for investment and asset
prices, and to a smaller degree also consumption, show similarities to the simulation exercises
in Section 2. The same results also hold labor [; and rental rate of capital rk; with upward
jumps in perceived persistence and downward jumps in perceived mean, whereas for inflation
and real wage these structural breaks do not arise since there are also no sharp changes in the
data.3!

Figure 5 shows a selected subset of the learning coefficients for the LIL model.>* As men-
tioned above, the learning processes react differently depending on the forecasting rule, which
already becomes visible by comparing the AR(1) and LIL models. Looking at the perceived
mean parameters, it is readily seen that the drops during the crisis period are substantially
smaller. However, looking at the second and third columns, we observe that the feedback from
lagged interest rates and inflation jump. Particularly for lagged interest rate, the jumps are to-
wards zero, suggesting a weakened impact from interest rates. Similarly the last column shows

the feedback from lagged investment, which show the jumping pattern during the crisis period,

30In order to compute the HPD intervals for the learning coefficients, we use the final 20% of the MCMC
sample for each model, which is further thinned with a factor 0.2, yielding a sample size of 10000 for the
parameters. We then re-run the filter over these parameter draws to to obtain the credible intervals for the
learning coefficients.

31The corresponding figures for these variables are omitted for brevity.

32Gimilar to the AR(1) model, only a small portion of the learning coefficients are displayed given the size of
the learning coefficient matrix.
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although to a much smaller extent for the asset prices.??

Finally, Figure 6 shows some of the learning coefficients for the MSV-learning model. In this
case, the largest change arises in the perceived mean coefficients, all of which start to rapidly
decrease following the crisis. These variables show a disproportionately large response following
the crisis, compared to their pre-crisis fluctuation levels. This large post-crisis response also
helps to explain the small estimated gain in the MSV model. While a larger gain could generate
more fluctuations pre-crisis and possibly improve the model fit, it would also make the post-
crisis response substantially larger. The following two panels, similar to the LIL model, show
the feedback from lagged interest rates and inflation respectively. In this case we observe more
gradual responses rather than jumps, particularly for interest rates, which is not surprising given
the small gain value. Nevertheless, we observe a similar change in direction for interest rates
where the parameters move towards zero, suggesting a smaller impact from interest rates on
these variables. The last column shows the perceived correlation parameters between the given
variables and government spending process, which is of particular interest for the MSV model
since the other two models assume unobserved shocks. We see that the perceived correlation
moves away from zero for all three variables, suggesting a larger impact from an increased
government spending. This is in line with the perceived weakened interest rate response, since
it makes monetary policy less likely to offset any changes in government spending.

To see the effect of these changes in the perceived mean coefficients on the model fit, Figure
7 plots the in-sample forecasts for the growth rates of output, consumption, investment and
wages for the MS-REE and all three learning model.* A known issue with REE models over
the post-crisis period is the over-prediction of these growth rates: the sudden downward shift
in the interest rates implies an increase in the growth rates of the model variables, whereas in
fact the growth rates have been slightly lower than the pre-crisis historical averages for output,
consumption and investment. As a consequence, the models tend to over-predict these variables
if no additional structural break is introduced into the model. Figure 7d shows that this is
indeed the case under MS-REE for the growth rates of output, consumption and investment.
As opposed to this, Panels a-c in Figure 7 show that this over-prediction issue does not arise in
the learning models. We interpret this downward shift in the learning models as a consequence
of the time-variation in the learning coefficients. Accordingly, the lower growth rates over the
post-crisis period emerge as a simple consequence of a pessimistic wave reflected in the perceived

mean coefficients.

33Note that we omit the learning coefficients on own lagged variables with the exception of investment: the
lagged asset price is not present in the learning matrix, and the response of consumption to lagged consumption
does not show a meaningful change over the relevant period.

34Hence, these plots simply break down the log-likelihood of each model to period-specific increments.
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Figure 4: Selected learning coefficients: AR(1) model. ¢, ¢; and I; denote asset prices, consumption
and investment respectively, whereas G, ¢; and I; denote their demeaned counterparts. The shaded area
corresponds to 2008Q4-2015Q1, which is the period where all models agree that the ELB constraint is

binding.
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4.4 Impulse Responses

Having established the differences between the MS-REE and learning models in terms of the
model fit, estimated parameters and learning coefficients, we next discuss some of the impulse
response functions (IRFs) between learning and REE-MS. For the learning models, we focus
on the period specific conditional IRFs over 2002Q1-2016Q4, which are presented in Figure 8
for output. The black and red lines at the left- and right-most sides correspond to the impulse
responses for the REE-MS model under the normal and ELB regimes respectively. We focus
on four shocks, namely the productivity 7,, risk premium 7,, government spending 7, and price
mark-up n,. For the learning models, the IRFs during the period 2008QQ4-2015Q1 are computed
under the ELB regime, while the remaining IRFs are computed under the normal regime.?”

The learning IRFs are characterized by two jumps in 2008 and 2015, which correspond to
the ELB entry and exit periods. The jumps show that there are large differences between the
IRFs calculated under the normal and ELB regimes. The overall time variation before and after
the crisis is different for each model. For the AR(1) model in the first panel, the time variation
for all shocks is relatively small compared to the jump in 2008. For the LIL model, there is more
time variation after the crisis period. In particular for productivity and government spending
shocks, the IRFs gradually move in the direction of the REE-MS (i.e. the red line), until the
system switches back to the normal regime in 2015. For the MSV-learning model, we observe a
gradual movement towards REE-MS impulse response during the ELB regime. These patterns
reveal that the learning process manifests itself in the IRFs as a slow convergence towards
the REE-MS model for the LIL and MSV models. As such, the learning and rational models
generate different impulse responses at the beginning of the ELB regime, where the difference
slowly diminishes as the system spends more time in the ELB regime.

A second important point related to IRFs is the difference between regime specific impulse
responses for learning and REE-MS models: the difference between regime-specific impulse
responses under REE-MS models (i.e. the difference between black and red lines) is typically
larger than the difference for learning models. To examine this more formally, we consider
the following exercise: we take five year periods during the normal regime before the crisis
(2002:1-2006:1V) and during the ELB regime after the crisis (2010:1-2014:1V). For the learning
models, we compute the median differences in the impulse responses between the two regimes,
along with the minimum and maximum differences in the IRFs to serve as a pseudo confidence
interval for these differences. Figure 9 plots these IRF differentials, along with the corresponding

difference under REE-MS case. What becomes quickly evident is that, the differences in learning

35In other words, we ignore the minor differences between the estimated regime probabilities during the ELB
entry and exit for the learning models. Alternatively, we can compute the IRFs under both regimes and average
them using the estimated regime probabilities. While this generates nearly identical results, it mixes up the
effects of learning and regime uncertainty during the transition period.
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models are smaller than the differences in the REE model in a majority of the cases: with the
exception of the risk premium shock in LIL and MSV models, the black line (learning model)
and the associated pseudo confidence interval remains below the blue line (REE model). This
result suggests that the REE-MS model overestimates the impact of the ELB regime on the
propagation of shocks, relative to the learning models.

An implication of these differences in impulse responses is on fiscal multipliers: a standard
finding with the REE models is that fiscal multipliers are typically larger when the ELB con-
straint is binding, compared to when it is not binding. Figure 10 shows the regime-specific
cumulative fiscal multipliers for the REE-MS and all three learning models.?® All learning
models confirm that there is an increase in the fiscal multiplier at the ELB regime, but the
magnitudes are different. Over a 10-year period, the REE-MS model implies that the cumula-
tive multiplier is up to 3.5 times larger in the ELB regime, compared to the normal regime. For
the LIL and MSV-learning models, the ratio remains similar to the REE-MS model up to 12
quarters, after which it remains below the REE-MS ratio over all horizons: for the LIL model,
the ratio reaches a maximum of 3, while for the MSV-learning model the maximum ratio is
around 2.5. For the AR(1) model, the ratio is even smaller, with a maximum ratio staying
below 2. These results imply that the impact of the ELB constraint on fiscal multipliers is
different under learning models: while the short-term effects are ambiguous, the multipliers are

uniformly smaller under all learning models over longer horizons.

4.5 Posterior Results: Endogenous Switching Models

In this section, we discuss the estimation results of the learning models with endogenous switch-
ing. While this does not lead to important changes in terms of the estimation results and
parameter values, the presence of endogenous transition probabilities serve as an important
stepping stone for the counterfactual simulations that we consider in Section 4.6. We define

the transition probabilities for the normal and ELB regimes as follows:

B 0 (1) = 0
0+ exp(—pr(if —i*))’ P2t =74 + exp(pprp(i;y —i*))’

with 1 — py; the exit probability from the normal regime, and 1 — pys the exit probability from

pu(t)

the ELB regime. iy denotes the shadow rate, defined as follows:

it = piy_1 + (1 = p)(0xms + Gaitt) + PaeAy.

N Oy;
36The fiscal multiplier is computed as FM = il Zzg , i.e. the cumulative response of output to a one
i=1 dng

standard deviation shock, divided by the cumulative response of government spending process over the same
period. In the figures we set N = 40, which yields multipliers up to 10 years.
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Fig.ur(.a 8: Output: Comparison of learning TRFs with REE IRFs. Each IRF shows a one standard
deviation shock of 74,m5,m4,m, respectively.
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(b) LIL

(c) MSV

Figure 9: Output: Impulse response differentials between normal and ELB regimes.
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Figure 10: Comparison of cumulative fiscal multiplier ratios between REE and learning models over
the normal and ELB regimes.

This equation defines the shadow rate as the interest rate that would prevail in the absence
of monetary policy shocks and the ELB constraint. According to our transition functions,
the probability of entering the ELB regime increases as the shadow rate approaches zero or
falls below zero. In our estimations, we fix the first hyperparameter # = 1, and estimate the
second hyperparameter for each regime, ¢r and ¢, using a Gamma prior with mean 0.2 and
standard deviation 0.1. The parameter determines the shape of the transition function: large
values lead to a sharp change in the transition probability as interest rates get close to zero,
while low values lead to a more gradual change in the transition probability.

Tables 4 and 5 show the estimation results for all three learning models. For the LIL and
MSV-learning models, the marginal likelihood is better compared to their exogenous switching
counterparts, while for the AR(1) model there is no discernible difference. For the hyperpa-
rameters of the transition probabilities, the entry and exit parameters remain fairly close to
each other. For the AR(1) model, the parameter on exiting the normal regime is lower at
0.1 compared to the ELB parameter at 0.18, which suggests that the ELB entry function is
smoother than the ELB exit function. Nevertheless, these two parameters have relatively large
HPD bands covering both sharp and smooth cases of the transition functions, suggesting that
the exact shape of the function is not well identified for the transition to and from the ELB
regime.

Table 6 shows the estimated regime probabilities, along with the estimated shadow rates.
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Compared with the exogenous switching models, we observe that the regimes are estimated with
more certainty, since the regime probabilities are estimated at 0% or 100% in the endogenous
switching case. During the ELB entry, we observe a similar pattern across the learning models
compared to the exogenous switching case: the AR(1) model enters the ELB regime from
2008Q4 onwards, while the LIL and MSV models enter the regime from 2008Q3 onwards. As
such, 2008Q3 is the only period with disagreement among the models, and they all agree that
the system is in the ELB regime from 2008Q4 onwards.

During the exit, we again observe similar differences between the models compared to the
exogenous switching case. While the AR(1) model generates a return to the normal regime
from 2015Q2 onwards, the MSV and LIL models remain in the ELB regime until the end of
our sample period. As such, the only difference during the exit between the endogenous and
exogenous switching cases arises in the LIL model, which showed a pattern similar to the AR(1)
model in the previous case.

The patterns observed in the estimated shadow rates are consistent with the estimated
regime probabilities. It is readily seen that the AR(1) model is characterized by higher shadow
rates both during the crash in 2008, and after the recovery in 2015. As a result, while the
the shadow rate under the AR(1) model returns to positive levels by the end of the sample,
the rates under LIL and MSV models are still in the negative domain. As already discussed
in the exogenous switching section, the observed differences in the shadow rates are a result
of both the estimated Taylor rule parameters, as well as the differences in the filtered output
gap processes. The AR(1) model predicts a smaller drop in the output gap process compared
to the other two models.>” This is combined with a higher interest rate smoothing parameter
(and therefore a smaller initial reaction) that leads to a smaller drop in the estimated shadow
rate. Similar to the exogenous switching models, we do not disentangle these effects further,
but rather interpret the differences as the uncertainty surrounding the ELB exit period.

To illustrate the results, Figure 11 shows the estimated shadow rate for the AR(1) model
for the last 15 years of the sample, from 2001Q1 onwards. The implied time path of the shadow
rate and the transition functions for the other two models look fairly similar, which are omitted
here.®® We use the endogenous switching models to consider a set of counterfactual simulations

over the ELB period in the next section.

3TThe differences in the output gap processes in turn are due to differences in the filtered productivity
processes. A smaller drop in productivity in the AR(1) model leads to a smaller drop in the output gap process.

380ne difference between the AR(1) model and the other two learning models, as already discussed, is that
the shadow rate is characterized by a smaller drop in the AR(1) model during the entry to the ELB regime.
Other than this difference in levels, the implied pattern in the shadow rates is similar across the models.
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Date || Model
AR(1) LIL MSV
ELB prob. Shadow rate | ELB prob. Shadow rate | ELB prob. Shadow rate
08Q3 || 0% 0.78 0% 0.4 0% 0.36
08Q3 || 0% 0.37 100% -0.12 100% -0.21
08Q4 || 100% -0.27 100% -0.92 100% -1.06
09Q1 || 100% -0.64 100% -1.43 100% -1.58
15Q2 || 100% -0.01 100% -1.15 100% -1.02
15Q2 || 0% 0.05 100% -1.12 100% -0.99
15Q3 || 0% 0.04 100% -1.10 100% -0.96

Table 6: Estimated average ELB regime probabilities and shadow rates in endogenous switching
models.

3 T T T T T T T T T T T T T T

= = = Shadow Rate
Interest Rate

2 i

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

Figure 11: Nominal interest rate and the estimated shadow rate over the sample period for the AR(1)
model.
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4.6 Counterfactual Simulations

In this section we investigate the impact of learning dynamics on the ELB duration through a set
of counterfactual experiments. We consider the following setup with the estimated endogenous
switching models: using the MCMC draws for the learning models, we first run the filter up
to period 2008Q4. From 2008Q4 onwards, we simulate the economy for a period of 8 years (32
quarters). For each model, we use a total of 1000 MCMC draws, where the parameter draws
are taken from the last 20 % of the MCMC simulation with a thinning factor of 0.02. We repeat
this exercise for each learning model under the estimated gain value, as well as different gain
values to isolate and assess the effects of learning on the ELB duration.

Figure 12 shows the average ELB exit probabilities for five experiments with gain values
between 0 and 0.0075, along with the benchmark experiment with the estimated gain value.
This exercise reveals a clear pattern where smaller gain values are associated with higher average
exit probabilities. In all three models, the case with no updating (gain = 0) yields the largest
exit probability, while the case with the most updating (gain = 0.0075) yields the lowest exit
probability. The magnitude of changes in these probabilities differs across the models: the exit
probabilities oscillate in the range 50%-70% in the AR(1) model, 25%-95% in the LIL model
and 57%-99% in the MSV model. Nevertheless, they all point in the same direction where a
faster learning process leads to a worse outcome and a prolonged ELB episode.*”

In light of the above results, there are several key takeaways from this section. First and
foremost, our results indicate that the presence of stronger learning dynamics unambiguously
increase the frequency of long-lived ELB regimes. This offers two potential interpretations for
the 2008-2015 period through the lens of our learning models. The first one is that expectations
may have been well anchored during this period and the effects of learning were limited. Second,
while learning dynamics created a downward pressure on the economy, there were other channels
at play that may have offset the adverse effects of learning. In particular, unconventional
monetary policy tools such as forward guidance and quantitative easing might have had such
an impact. Importantly, a potential anchoring of expectations and the effects of unconventional
policy are not mutually exclusive events. We learningeave an exploration of policy interactions

with expectations under learning to future research.

5 Conclusions

In this paper we explored a general regime switching setup subject to adaptive learning, where

the agents’ do not know the full details of a complex economy, and use past data to update

39 Appendix E provides some additional figures on the distribution of ELB regime durations, and time paths
of inflation and output gap over the counterfactual period for all learning models.
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their models and form their expectations about the future. We provided an estimation method
to handle this class of models, and applied it to the Smets-Wouters (2007) model over the ELB
period during 2008-2015. Our results show that adaptive learning models generally improve
the model fit relative to the REE benchmarks. We find that impulse responses under REE
and adaptive learning models typically move in the same direction once the economy switches
to the ELB regime. However, the magnitudes of the changes tend to be smaller and more
gradual under adaptive learning, which suggests that standard REE models might overestimate
the impact of the ELB on the propagation of shocks. Our counterfactual experiments reveal
that stronger learning effects over the ELB episode tend to put a downward pressure on the
economy and prolong the duration of the ELB regime. This suggests that other effects, such as
unconventional policy tools and in particular forward guidance, might have had an offsetting
effect on learning dynamics over this period. We leave an explicit analysis of the relation

between adaptive learning and unconventional monetary policy to future research.
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Appendix

A Long-run Taylor Principle

This section sketches the derivation of the Long-run Taylor Principle (LRTP) in Section 2.1.
The readers are referred to Appendix A in Davig & Leeper (2007) for the full set of assumptions
and the proof. LRTP refers to the determinacy of the Rational Expectations Equilibrium, which
is defined as the existence of a unique bounded solution for the inflation process m;. Recall that

the process is given by:

a; 0 Tt _ P11 P12
0 | 7oy D21 P22
-1

a; 0 P11 P12

0 P21 P22
determinacy of REE is that both eigenvalues of M lie inside the unit circle. The eigenvalues of

Eﬂﬁ,tﬂ] i [Tt] ‘ (A.l)

Et7r2,t+1 Tt
Define the matrix M =

. A necessary and sufficient condition for the

M are given by:

A = (op11 + aipas £ \/(042]911 — a1P22)? + 4o agpiapsr). (A.2)

2&10[2
Davig & Leeper (2007) show that, the condition:
(1 —ag)pi + (1 — a1)pas + g > 1, (A.3)

which is defined as the Long-run Taylor principle, is both necessary and sufficient for \; 5 to lie

inside the unit circle.

B RPE and T-map

In this section we derive the T-map and the associated Restricted Perceptions Equilibria asso-

ciated with the fixed point of the T-map for several cases.
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B.1 Special case with 2 regimes, no lagged variables

We first examine a special case with 2 regimes and no lagged state variables as presented in 2,
where we can obtain an analytical expression for the RPE. Note that in the special case with
» = 0, the solution to the model from Section 2.1 can be written as a generic 1-dimensional

Markov-switching model of the form:

Ty = d(st)m,

e = pPri—1 + U,

where d(s;) = p—f. The moments necessary for the T-map are given as follows:

alse

E[’/Tﬂ"t] = PlE[mrt\St = 1] + PQE[?TtTt‘St = 2],

P
E[ﬂ'tTt|St = 1] = E[d(st)rf\st = 1, St,1 = 1]]?11 + E[ (St)'rt |St =1 St 1= 2](1 _p22)P2
1
P.
= dypi1 + di(1 —p22)P2~
1

Similarly, we have:
Py

Elmr Sy = 1] = dopea + da(1 —pn)P
)

which yields:

P, P,
Elmr] = Pi(dyp1y + di(1 — pzz)P )+ Pa(dapae + da(1 — pn)Pl)
)

Plugging in the steady-state probabilities P, and P, the T-map is given as follows:

a1(1 — pa) + as(l — pi1)

(@) 102(2 — p11 — pa2) (dp+1)
with the E-stability condition:
DT, = a1(1 — pao) + an(1 —Pn)p <1

041042(2 — P11 — ng)

Re-arranging the expression above yields the Long-run E-stability (LRES) condition presented
in Section 2. Further note that the regime-specific T-maps, and the associated regime-specific

E-stability conditions are given by:

d 1
d— Pt ,
Q;
pry =2 <1,

)
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which implies that E-stability of all regime-specific equilibria is a sufficient, but not necessary
condition for LRES.

B.2 1-dimensional case with m regimes

We next generalize the T-map and RPE to the generic case with lagged state variables and m
regimes. While the T-map becomes analytically intractable in this case, we can still numerically
compute it in the 1-dimensional case. Note that the Fisherian model considered in Section 2.2

can be written as a generic 1-dimensional Markov-switching model of the form:

Ty = d(s)ry + b(s¢)mi1,

T = pri—1 + Uy,

m and d(s;) = %. In this Section we consider the general case

with m regimes, with transition matrix given by:

where b(s;) =

P11 - DPim

Pm1 -+ Pmm

The 2-regime setup of Section 2.2 is a special case with m = 2. We omit the first moment E[mr],
which is trivially given as zero. Using this, we compute the second moments starting with the

conditional variance. We have:

m

Eln;] = PE[r;|S, =1,
i=1
) TN o 4 . P
Elr[S; = 1] ZE[@ Sy =4, 511 = j]pjifa

i=1
where P; denotes the 7" element of the steady-state vector of the Markov chain. Plugging in

the expression for m; yields:

S . P
= Z E{d(st)lf'? + b(St)Qﬂ'tzfl + 2b<3t)d(8t)7°tﬂ't,1‘st =1, Stfl = j]pﬂ_]

Jj=1 P,
= Z E[dgdz + b?'ﬂ'tz_l + 0-72, + ledirtﬂ't_”st_l = ]]p]ZF]
Jj=1 i
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Note that this last expression implies m equations in m unknowns for the conditional variances,

given the conditional covariances E[mr|S; = j]. Using this, the unconditional variance is given
by:

=20 Z (dioy + BB _1| S0 = jl+ 07 + 2ndiri Elma|Ses = f)pii g

Next we move onto the covariance term E|[mr]:

E 7Tt7} Z PE Wtrt’St = Z]

=1
L . P
E[Wtrt|5t = Z] = Z E[Wﬂ"t|5t =1, St—l = j]pﬂF
j=1 !

- . P
Z Eb(s)m_1rm + d(st) ?’St =1,51 = ]]Pﬁ#
j=1 !

> (bipElmr,|S, = j] + dﬂf)pﬂﬁ'
i=1 '

Note that again, the last expression implies m equations in m unknowns for the conditional

covariances. With this, the unconditional covariance is given by:

P;
E7Tt7"t ZmPZ bipl Wtrt’St—J]+dU )pij'

=1 7j=1

Next we compute the first-order autocovariance:

E[T(’tﬂ't_l] = Z PZ'E[T('tﬂ't_ﬂSt == ’L],
i=1

R . P
E[ﬂ't’ﬂ't_ﬂst = Z] = Z E[b(st)’ﬂf_l + d(st)ﬂ-t—lrt’St = 1, St—l = j}pﬂ?]
j=1 !

P

Z (b E[77|S; = j] + dipE[mre| Sy = 7])pji=> P

Given the conditional covariance and conditional variance terms, the above expression yields

the conditional autocovariances. Hence the unconditional autocovariance is given as:

P

Elmm] =Y P> ( (0Bl S = 5] + dipElmers| S, = d)piig -
=1 7=1
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Finally note that:
E[ St Ti— 17“t ZP Zdsz 7Tt7“t‘St = ]]paz )

and:

E[b(sy)ms_114] ZP ZblpE (1| Sy = ]pﬂ

. d El(m — bm1)ry - .
Recalling the T-map ; — T'(d,b) = Bl(r—dr)m_y |- the above conditions fully pin
Elr]
down T'(d,b). It is generally not possible to obtain analytical expressions for this mapping,

which also applies to the RPE values d®F” and b%PF. Therefore our results in Section 2.2 are

computed numerically for given values of parameters.

B.3 N dimensional case with m regimes

In this section we derive the T-map for the general N dimensional case with m regimes. After
plugging in the PLM into ALM, the model can be re-written as a generic Markov-switching
model of the form:

X = a(sy) +b(se) X1 + d(s¢)ey,

€ = PE€t—1 + N,
where a(s;) = (I — C(s¢)b) " (A(s¢) + C(s¢)a),b(s;) = (I — C(s¢)b) 'B(s;) and d(s;) = (I —
C(s:)b)~1(C(s¢)(dp) + D(s;)). We need the first and second moments of this system in order
to compute the the resulting T-map for the RPE. Starting with the first moment, we have:

] =Y PE[X)|S, =1,
=1

Xt|St = Z = Z a; + 0; X1 + d@ft’StA = J]Pﬁ#
=1 ‘

P

aZ + b, E[X,|S; = j])pﬂp )

HMS

The expression above implies m equations in m unknowns for the conditions means. Using this

yields:

m m P
= P; i + 0 E[ XS, = =
>R (o + bELX: = s
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Moving onto the second moments and starting with the covariance term, we have:

E[X;] =Y PE[X€}| S =],

E[X€,|S: = i|E[)a(s;) + b(s:) Xi—1 + d(s;)€r)e;] S = 1]

L P
= El(a; + b X1 + dier)ey| Sy = i
J= 7

m

[y

m . P
=Y _(bipE[Xec|S, = j] + diZo)psi 5
j=1 !

The last expression again implies m equations in m unknowns for the conditional covariances.

The unconditional covariance is then given by:

m m

. P;
E[X€] = Zl P, Zl<me[Xte;!St =]+ di2psip-
1= 1=
Next we compute:
E[X,X]] = ZZDZ'E[XtXt,’St =4,
=1

E[X.X[|S; = i] = Ela(st)a(s) + 2a(s;) X,_1b(s:)" + 2a(sy)ed(se) +

b(st)Xt—lXé_lb(Sty + Qb(st)Xt_1€td(St)/ + d(St)GtEQd(St)WSt = Z}

= Z E[CLZ'CLQZCLZ‘Xé_lb; + 2a262dé + biXt—lXt,_lb; + QbiXt_1€;d; + dz‘EtG;dHSt == j]pﬂFj

j=1 '
Given the conditional means and covariances, the last expressions implies m equations in m
unknowns for the conditional moments E[X;X[|S; = i]. The unconditional moment is then
given by:

/ - - / / -11./ / 171,/ / N !/ P7

ElX.X)] = Z P Z(aiai+2aiE[Xt’St = jbi+bi B[ X, X3| S = jlbj+2b: E[Xye] S = jlp dz’"‘dizedi)pﬁﬁ-
Finally we compute the autocovariance term:

E[X,X, 4] =) PE[X,X] |8 =1,

=1

E[XtX£71|St = Z] = E[aiXLl + bithlthfl + dipEt,1X£71|St = Z] =
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- . . P
> (@E[X|S = j] + bE[X, X{|S; = j] + dipEle, X{|S = J])Pjiﬁ-

j=1
The last expression is pinned by the conditional first and second moments computed above.
The unconditional autocovariance is then given as:
N . . . P;

BIXX]) = 37 3 (aiBIX|S, = j] + bEIXi XIS, = j) + dipEle X{|S: = j)pi -

i=1 j=1

Recall that the T-map is given by:

a E[Xt — bXt—l — det]
b — E[(Xt —a— dEt)Xé_l)E[XtXé]_l]
c E[(X; —a—bX; 1)€}|Elee;] !

Hence, given the first and second moments computed above, the T-maps for a, b and ¢ are
pinned down. Similar to 1-dimensional case, it is generally not possible to find analytical ex-
pressions for these matrices. Further note that, the T-map for b — T'(a,b,c) involves a 2
order matrix polynomial of dimension N. This means there can be up to (2]3[ ) for b. To our
knowledge, there is no straightforward and general method to compute the full set of solutions
to this problem. In this paper, we do not compute these fixed-points and rely on Monte Carlo

simulations when necessary.

Further note that the regime-specific T-maps are given by:

a Az + CZ(CL + ba)

These simply correspond to the standard MSV solutions given the regime-specific matrices.

Computing the fixed-points yield the regime-specific equilibria as follows:

CLRi = (I — C,L — CibRi)_lAi,

vec(DR) = (I — (I @ (C;ib')))vec(d) + (p @ C;)vec(d) + vee(D;),
which yields the regime-specific values for % and d® respectively, for a given matrix b%. The
second-order polynomial for b% can be solved using standard toolboxes such as Adjemian et al.

(2011) and Uhlig et al. (1995), which then completely pins down the regime-specific MSV. De-

noting 0 = (a, b, d)’, the associated Jacobian for E-stability condition is given by:
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C;+ Cib U@C;L(a/ & CZ> 0
DI 0 ’20 b 0
_D@ - % I
0 vec, , (d' ® C;) Cib+vec,,, (0 @ C;)

where vec, ! denotes the matricization of a vector to an (n,n) matrix.

B.4 Long-run E-stability for the New Keynesian Model

This section derives the long-run E-stability conditions for an extended version of the New
Keynesian model from Section 2. The main purpose is to investigate how the presence of
exogenous shocks affects the stability conditions presented in Section 2. Consider the following

version of the New Keynesian model with two exogenous AR(1) shocks:

(
_ 1
Ty = By — 2(ry — Eymyn) + €ay,

T = BET1 + Koy + €y,
Ty = mam{07 ¢.Z’xt + ¢7r7rt + nr,t}>

€xt = Pz t—1 + Nt

€nt = Pr€rit—1 + Nty

We first derive the regime-specific T-maps and the associated Jacobian matrix. Using the same

notation from Section B.3, we have:

(a)_)T(a’d>:(AiJrCia)’@T(a?d):(Ci 0 )7

d Cidp + D; dla, d] 0 (pCy)

where the underlying Rational Expectations Equilibrium is given by a = (I — C;)~*A; (which
reduces to a vector of zeros in this example) and vec(d) = (I — p' @ C;) tvec(D;). Notice first
that, given the Jacobian matrix as above, the first part on the diagonal governs the stability of
mean dynamics a, while the second part governs the stability of shock coefficients d. As such,
the underlying E-stability conditions for the means and shocks are independent. Second, with
shock autocorrelation values of 0 < p, < 1 and 0 < p, < 1, the eigenvalues associated with the
stability of d are always smaller than the eigenvalues of a. Therefore, the E-stability condition
on the mean dynamics acts as a sufficient condition for E-stability on the shock dynamics.
For the parameterization that we considered in Section 2, autocorrelation parameters with

values p, < 0.87 and p, < 0.87 guarantee that the shock dynamics around d are E-stable in

both normal and ELB regimes. Therefore the stability conditions considered in Section 2 fully
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extend to this case with exogenous shocks, without loss of generality.
For completeness, we also provide the RPE and the associated long-run E-stability for the

model. For the T-map, we obtain:

a N T(a d) . Pl(Al -+ Cla) + PQ(AQ -+ CQG/) 8T(a, d) . P101 -+ PQCQ 0
d ’ P (Codp 4 Do) + Po(Cadp + D) ’ Ola, d| 0 P (pCh) + Pa(pCy) 7

where the RPE is given by:

a = (I — P101 — P202)71(P1A1 + PQAQ),
d= (I —p @ (PCy) — p @ (PaCy))  (vec(PyDy) + vec(PyDy)).

Hence, in the absence of lagged variables, the equilibrium and the associated stability conditions

still come out simply as weighted averages of the underlying regime-specific equilibria.

C Kim-Nelson Filter

This section provides a more detailed description of the KN-filter used in our estimations. The
filter nests the standard Kalman filter for unobserved state variables with the Hamilton filter
for unobserved regime probabilities. These two filters are followed by an approximation step
via collapsing, which reduces the number of states from m? to m in order to keep the algorithm
tractable. We extend the filter with an adaptive learning step, which takes a weighted average of
the (Kalman) filtered states based on the (Hamilton) filtered regime probabilities. We assume
that the resulting states are observable to the model’s agents, who update their beliefs with a
constant gain least squares algorithm using the latest available data. This leaves the Kalman
and Hamilton filter blocks intact, since the model is conditionally linear at every period, given
the previous period’s adaptive learning update.

The endogenous regime-switching model follows from a simple extension of the above filter,
where the transition probability matrix Q(7, j) with a time-varying matrix ¢;(7, 7). This matrix
is updated every period after the Kalman filter block given the shadow rate, which in turn is

calculated based on the inflation and output gap variables contained in matrices St(ftj ),
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Table 7: KN-filter for Markov-Switching DSGE Models under Adaptive Learning

{S *vé‘;) +’Y(St)5t 1+’Y(St)€t, et ~ N(0,%)
yf—E+FSf

0) Initial States :

55‘0, 155‘0, Pr[So = i|®g], ®o given.

1) Kalman Filter Block with the standard measurement and transition equations:

Fort=1:N
For {St_1 =1,St = j}

S 6) g ()

t(\;f)l ( ) t( )1|t 1 +(")f2 D)
Pt_\1£_1—1 1; Ptl—l\t—l ,1J +731 Z(J)(,\/?’J )
{9} = - POV,

Felid) — F(j)p(‘i 25) @)
i i i, j i) L, (i,
St(“u) - S£|1J)1 + P( +3) (F(]))’(Fe( )y Ty (d)

p(" 23) p(’ 1) (F(J)) (Fe(ivj))*lF(j)pt(lit{)l

2) Hamilton Block for transition probabilities:

Denote: Pr[Sy_1 =14, St = j|®r—_1] = pp:.i{_l,f(yd(bt,l) the marginal likelihood,
Pr{Si—1 =1,8 = j|®¢] = Ppiijt and Pr[Sy = j|®¢] = ijt‘t-

PPiT;J)l = Q(i,j)ppii,)l‘,,l

Flyel®oo1) = M SM ) F(yel S = i, Se = 4, @ 1)pp[;”,
opliod) _ f(yt|St7lziest:jxq>t71)17p§?;"]7)l
PPy G FlytI®e—1)
iy
pt‘t =M PPy g

3) Collapsing to reduce the number of states from m? to m:

(i) g (:3)
g — Zyl"prfJ f\L’fj
t|t ({)

(1.3) (p(5:9) | (5(0) _g(123) ) g(3) _ g(5:3) s
P = =M eegy? P +<s<|7) e -sn
t|t J

Pt

4) Update expectations based on filtered states:

Updating Expectations based on Filtered States:

S M (5) g(5)
St = 2j=1 P S ol
Dy =Dy_1 + ¥R, S q)e— 1(St\t*4’t 1Se—1pe—)7

1
RyY = Re_1+v(S¢1)4-151 -1 — Be—1)

D Smets-Wouters Model Description

The model consists of 13 equations linearized around the steady-state growth path, supple-

mented with seven exogenous structural shocks. We have two minor deviations from the bench-

mark model. First, we assume that the mark-up shocks follow AR(1) processes, as opposed

to ARMA(1,1) processes assumed in the original model. Second, we define output gap as the

deviation of output from the underlying productivity process following Slobodyan & Wouters

(2012a), as opposed to the original model that defines output gap based on the flexible economy.

This second deviation allows us to restrict the state-space of the model by omitting the flexible
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part of the economy, thereby reducing the computational costs. The rest of the model follows
the same structure as the original model. The readers are referred to Smets & Wouters (2007)
for further details about the microfoundations. In this section, we briefly outline the linearized
model used in our estimations.

The aggregate resource constraint is given by:

Yr = CyCr + Uyie + 242 + €], D.1)

g _ g g
€ = Pg€r_1 T 1,

where 1, ¢, 7; and z; are the output, consumption, investment and capital utilization rate re-
spectively, while ¢, 7, and z, are the steady-state shares in output of the respective variables.
The second equation defines the exogenous spending shock €] where n/ is an i.i.d-normal dis-

turbance for spending. The consumption Euler equation is given by:

¢t =161+ (1 — ) Ecrpr + co(le — Eelir) — e3(re — Eymeyr) + GQ, (D.2)

b_ b b
€ = Po€e_1 T+ N,

with ¢; = %/(1—1— %),02 = (0. — 1) (wgslss /css) [ (0e(14+ %),03 =(1- %)/((H—%)UC), where A, v and
o. denote the habit formation in consumption, steady state-growth rate and the elasticity of
intertemporal substitution respectively. €’ corresponds to the risk premium shock modeled as
an AR(1) process, where 1 is an i.i.d-normal disturbance. Next, the investment Euler equation
is defined as:

iy = i1i1 + (1 — i1)Eyigyr + doqy + €, (D.3)
€ = pici_1 + 1},

. . o 1 . o 1 oo —oe . _ . . .
with 2, = T2 T TR where § = [v7%, ¢ is the steady-state elasticity of capital

adjustment cost and 3 is the HH discount factor. ¢; denotes the real value of existing capital
stock. €! represents the AR(1) investment shock , where 7! is an i.i.d-normal disturbance. The

value of capital-arbitrage equation is given by:

¢ = (Eiqiy + (1 — Q1)Et7"f+1 — (ry + Eymq) + éef, (D.4)

with ¢; = (1 — 9). The production function is given as:

yr = ¢p(aky + (1 — a)ly + €}),

a ___ a a
€ = Pa€i_1 T 1,

where k; denotes the capital services used in production, « is the share of capital in production
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and ¢, is ( one plus) the share of fixed costs in production. €} denotes the AR(1) total factor
productivity shock. Capital is assumed to be the sum of the previous amount of capital services

used and the degree of capital utilization, hence:
k; = kt—l + Zt- (D6)

The degree of capital utilization is a positive function of the degree of rental rate, 2, = 27,
with z; = %, 1) the elasticity of the capital utilization adjustment cost. Next the equation

for installed capital is given by:
ki = kikey 4+ (1 — ky)ig + koel, (D.7)
with k; = 1%5, ke = (1 — %)(1 + B7)7%$. The price mark-up equation is given by:
pp = a(ky — 1) + € — w. (D.8)
The NKPC is characterized as:

_ p p
T = MKy — mopy + €,

(D.9)

p_ . D p
€ = Pp€—1 + M,

with 1 = By ,ma = (1 — 8v6,)(1 — &) /[6,((6, — 1)e, + 1)], where &, corresponds to the degree
of price stickiness, while €, denotes the Kimball goods market aggregator. The rental rate of
capital is given by:

rF = —(k, — 1) + wy, (D.10)

The wage mark-up is given as the real wages net of marginal rate of substitution between

working and consuming, hence:

(ce — 5@4), (D.11)

(A _ l
= wy (Jlt+1—)\/fy 5

where o; denotes the elasticity of labor supply. The real wage equation is given by:

wy = wwi—1 + (1 — wy)(Bywigy + Eempgy) — wop + €, (D.12)

w __ w w
€ = Pw€i—1 T N,

with w; = 1/(1+ 7), and wy = ((1 — BvEw) (1 =€)/ (Ew(dw — 1)ew +1)). Hence the real wage
is a weighted average of the past and expected wage, expected inflation, the wage mark-up and

the wage mark-up shock €}’ , where n;" is an i.i.d-normal disturbance. Finally, monetary policy
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is assumed to follow a standard Taylor rule subject to the ELB constraint:*°

re = maz{—7, pri1 + (1 — p)(rame + ryzy) + ray(Aze) + €1, (D.13)

T __ 'S 'S
€ = Pré&_1 T Ny,

where 7 denotes the steady-state interest rate, x; denotes the output gap, and €] is the AR(1)
monetary policy shock. As explained in Section 4, this is approximated as a 2-regime Markov-

process, where:

i = p(se)ri—1 + (1 = p(s0)) (rx(se)m + 1y (80)wy) + ray(s0)(Azy) + €(s1), (D.14)

with the normal regime given as p(s; =1) > 0, ro(s; =1) > 1, ry(s; = 1) > 0, rgy(s; = 1) >0
and €)(s; = 1) an AR(1) process with persistence p,, where the i.i.d. disturbances have a
standard deviation of 7,,,. The ELB regime is given as a pegged interest rate rule with p(s; =
2) =0, 7:(5:=2) =0, ry(sy =2) =0, rgy(sy = 2) = 0 and €, (s; = 2) a white noise process
with standard deviation 7, ,, .. In this paper, following the approach in Slobodyan & Wouters
(2012a), we deviate from the original Smets-Wouters model and define the output gap as the
deviation of output from the underlying productivity process, i.e. x; = y; — €f. This reduces
the number of forward-looking variables from 12 to 7, thereby reducing the computational costs

of estimating the model.

E Additional Figures from Counterfactual Simulations

This section provides some complementary results for the counterfactual experiments discussed
in Section 4.6. Figure 13 shows the resulting distributions of the ELB duration for all three
learning models under the benchmark scenario with the estimated gain values, along with the
average transition probabilities from ELB to the normal regime. This figure already reveals a
large heterogeneity across the learning models: the AR(1) and LIL models generate a sizeable
fraction of simulations that are still at the ELB after the 32 quarter period, with 25 % and
58 % respectively. Unlike these two models, the MSV-learning model leads to short-lived ELB
episodes, with a majority of them lasting between 5 to 10 quarters. Looking at the average
transition probabilities yields a similar pattern, with an exit probability of nearly 100 % for the
MSV-learning model, 60 % for AR(1) and 40 % for LIL. The model with the largest estimated
gain, i.e. LIL, yields the smallest exit probability, while the model with the smallest estimated
gain, i.e. MSV-learning, yields the largest exit probability.

40Note that is Sections 2 through 4, we denote the nominal interest rate by 4;. In this Appendix, with some
abuse of notation, we use i; to denote investment, whereas the nominal interest rate is denoted by r;.
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Figure 14 shows the average inflation and output growth from simulations over the coun-
terfactual period for all models, which are in line with the ELB durations: the LIL model
predicts a very large downside risk to both inflation and output growth, where a large number
of simulations lead to deflationary spirals and falling output growth. For the AR(1) model,
output growth evolves similar to the data. Simulated inflation values are typically lower than
the data and the simulations indicate a downside risk, similar to the LIL model but smaller in
magnitude. For the MSV model, both inflation and output growth are on par with the realized
data and there is no downside risk in either process, unlike the AR(1) and LIL models. For the
MSV model, the short ELB durations may seem at odds with the estimation results at a first
glance. Given the small gain value, the simulations typically recover quickly before the learning
dynamics build up a downward pressure. This is different than the estimation exercise, where
the model is guaranteed to stay in the ELB regime long enough for the learning dynamics to
kick in and reach sizeable effects. These results are consistent with the ELB frequency distri-
butions discussed above, and they show that the prolonged ELB regimes in the AR(1) and LIL

models are accompanied by below average output growth and inflation in the simulations.
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Figure 13: Left panel shows the distributions of the ELB duration for learning models. Right panel
shows the average transition probabilities from ELB to the normal regime together with the estimated

transition probabilities.
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Figure 14: Monte Carlo distributions of inflation (left) and output growth (right) for the learning
models over the counterfactual period. The dotted line shows the actual values of inflation and output
growth, while the solid line shows the counterfactual mean. We plot two layers of uncertainty around
the counterfactual mean: the inner layer shows the 90% interval from the MC experiment where the
parameters are fixed at their posterior mean (hence the uncertainty is due to randomized shocks).
The second layer shows the 90 % interval from the MC experiment where the parameters are drawn
from their MCMC distribution at every simulation (hence the uncertainty interval is a combination of
randomized shocks and parameter uncertainty).
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