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Abstract

We analyze the business cycle implications of adaptive learning at the e�ective lower

bound (ELB). Regime shifts by monetary policy are not directly observed by agents, and

instead they gradually learn about the changes based on past observations. We �rst derive

the stability conditions associated with these models in a general regime-switching frame-

work, and then estimate the Smets-Wouters (2007) model on U.S. data over the period

1966-2016 under a variety of learning rules, where agents do not immediately recognize

the break in the monetary policy regime when the ELB on nominal interest rates starts

binding. Our results show that, (i) AL models typically outperform the regime-switching

RE model in terms of in-sample �t, (ii) the impulse responses in both RE and learning

models change in the same direction with the switch to the ELB episode, but the magni-

tudes under learning models tend to be smaller, (iii) counterfactual experiments suggest

that stronger learning dynamics typically prolong the ELB duration.
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1 Introduction

With the onset of the Global Financial Crisis in 2007-08 and the subsequent drop of interest

rates to near-zero levels among the leading central banks, there has been increased interest

among policymakers and central bankers alike about the e�ective lower bound (ELB) constraint

on nominal interest rates. There is still ongoing debate about the precise impact of the ELB

constraint on the economy as a whole and in particular about its macroeconomic cost in terms

of aggregate output levels. A common approach in most macroeconomic models examining

the ELB episode is the assumption of Rational Expectations (RE), where agents have perfect

information about the underlying economic conditions along with all other cross-correlations

of the relevant macroeconomic variables. In this paper, we contribute to the growing literature

on analyzing the e�ects of ELB episodes by relaxing the perfect information assumption, and

instead estimating DSGE models under adaptive learning subject to the ELB constraint.

We model the ELB constraint as a regime shift in monetary policy, which is captured as a

Markov-switching process. In this sense, monetary policy follows a standard Taylor rule during

normal times as long as the ELB constraint does not bind. When the ELB constraint starts

binding, monetary policy switches to a pegged interest rate regime, where it is unable to react

to changes in in�ation and output gap. This approach is combined with adaptive learning on

private sector agents' expectation formation process, which relaxes the assumption that agents

have perfect knowledge about the underlying economic conditions. Instead, they have their

own forecasting models, possibly under- or over-parameterized, which may not coincide with

the correct economic structure. In this sense, agents act as econometricians and update their

models each period as new observations become available.

The presence of adaptive learning means that private sector agents use a class of econometric

models, where they gradually become aware of the underlying regime switches only to the extent

that these switches have an observable impact on their information set. In the context of the

ELB, this corresponds to three key deviations from the RE framework: �rst, as the nominal

rates drop to near zero levels following the GFC, agents do not initially know where the lower

bound is, and particularly whether and how far the rates will drop into the negative territory.

This can also be interpreted as a situation where the lower bound is known to the central

bank but unknown to agents, who instead employ a "stochastic lower bound" along the lines

of Masolo & Winant (2019). Second, agents do not immediately know the structural changes

implied by the regime switch but only learn about them over time, in particular about the

cross-correlations and the transmission of shocks. Third and most importantly, the expected

duration of the ELB regime is unknown to agents. Studying the business cycle dynamics in

this framework is of particular interest, because the underlying shock transmission channels

and the related policy implications are di�erent under adaptive learning compared to the RE
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framework, as we discuss further below.

The standard RE models come equipped with a perfect foresight assumption about regime

switches, which equates the objective expected durations of the underlying regimes with agents'

subjective expectations. This typically leads to short periods of anticipated ELB episodes:

DSGE models estimated on the U.S. economy report estimates of the expected ELB duration

over 2009-2016 ranging between 3 to 9 quarters,1 whereas the empirical duration was 28 quar-

ters. The di�culty to generate plausibly long ELB durations may be seen as a shortcoming

of RE models as it imposes a form of non-rationality on the agents: since, in a given period,

they expect to leave the ELB regime soon, they are constantly surprised during the 28 quarter

period without ever revising their belief models for an extend period. Our paper makes this

non-rationality explicit with the introduction of learning, which allows us to generate more

realistic ELB durations that can match the data.

Since there is scant research on misspeci�ed expectations and adaptive learning in regime

switching environments, we start with an introductory example using a 1-dimensional Markov-

switching model of the Fisher equation and study it under adaptive learning. In this limited

information framework, we derive the corresponding equilibrium and expectational stability

(E-stability) conditions.2 Of particular interest is the result that the model as a whole remains

E-stable even if one of the underlying regimes is E-unstable, as long as this regime is su�ciently

short-lived. We call this the Long run E-stability principle, in parallel to the Long-run Deter-

minacy of Davig & Leeper (2007) used in Markov-switching RE models. We then illustrate this

concept in a skeleton version of the baseline New Keynesian model, where the pegged interest

rate rule during the ELB regime leads to indeterminacy in a RE setup, and E-unstability in

the adaptive learning framework. In both cases, ensuring that ELB durations are short-lived

or that the Taylor rule during normal regimes is su�ciently strong, is enough to achieve overall

stability.

After studying the theoretical properties of this modeling framework, we introduce a variant

of the Kim & Nelson (1999) �lter to estimate the class of Markov-switching DSGE models under

adaptive learning, both with exogenous and endogenous regime switching. Applying the �lter

for the Bayesian estimation of the Smets-Wouters (2007) model yields the following results: the

adaptive learning models with regime switching in the monetary policy rule typically outperform

the standard RE model (with or without switching in the policy rule) in terms of marginal

likelihood under a variety of learning rules. More importantly, we observe systematic di�erences

in the impulse response and shock propagation structure of the models under consideration. In

particular, we �nd that impulse responses move in the same direction under learning and RE

1See e.g. Lindé et al. (2017); Ji & Xiao (2016); Chen (2017), among others.
2E-stability refers to the stability of model dynamics under adaptive learning. When the stability conditions

hold, the learning dynamics converge to an ergodic distribution around the underlying equilbirium, whereas a
violation of E-stability conditions results in divergent and explosive learning dynamics.

3



when the economy switches from the normal to the ELB regime, but the magnitudes of change

under learning models tend to be smaller. This suggests that RE models may overestimate the

impact of the ELB on shock propagation. A side-e�ect of this result is that RE models may

exaggerate the size of �scal multipliers over this period.

We also consider a number of counterfactual experiments to discuss the e�ects of learning

over the ELB period. We �nd that simulations under learning typically result in ELB dura-

tions longer than the empirical duration of 7 years for the U.S. economy, with values of average

in�ation and output growth lower than their empirical counterparts. We observe a positive cor-

relation between the ELB duration and the speed of learning (i.e. the constant gain coe�cient),

where stronger learning dynamics increase the probability of prolonged ELB durations and de-

�ationary spirals. This result emphasizes the importance of keeping private sector expectations

anchored through unconventional policy measures such as forward guidance.

The paper is organized as follows: Section 2 illustrates the main concepts in a simple

Fisher equation framework with one-forward looking variable. Section 3 provides the general

higher dimensional setup, the estimation methodology and the learning rules that we use in our

empirical exercise. Section 4 discusses the estimation results for Smets-Wouters (2007) model,

the stability dynamics and some counterfactual experiments with the learning models. Section

5 concludes.

Related Literature

Various approaches have been used in the literature to model the ELB constraint. Some re-

searchers use a perfect foresight & endogenous duration approach, which allows for a joint

determination of expectations and regime switches; see e.g. Maih (2015); Lindé et al. (2016,

2017); Kulish et al. (2017). Another method which is more common in VAR-literature is to

use a threshold-switching method, where the economy is assumed to be in the ELB regime if

interest rates fall below some pre-speci�ed level, see e.g. Bonam et al. (2017). A �nal approach

is to use a Markov-switching framework, where the presence of the ELB regime is determined

by its predictive density, see e.g. Binning & Maih (2016). Lindé et al. (2017) show that Markov-

switching and endogenous duration approaches typically lead to similar results as long as the

ELB constraint is accounted for. In this paper, we use the Markov-switching (MS) approach

to model the ELB constraint.3

In parallel to this, there is a vast and growing literature on the empirical validation of

3Aside from the ELB episode, MS approach recently gained popularity in DSGE literature to model structural
changes such as monetary policy switches or volatility breaks, see e.g. Sims & Zha (2006), Davig & Leeper (2007),
Sims et al. (2008), Liu et al. (2011), Liu & Mumtaz (2011), Bianchi (2016), Bianchi & Ilut (2017) and Bianchi
& Melosi (2017) for some of the recent work. Other related work includes Bullard & Du�y (2004) that studies
learning about unanticipated structural change in productivity in an RBC framework, and Hollmayr & Matthes
(2015) that studies consequences of �scal policy shifts when agents have uncertainty about the switch.
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adaptive learning in DSGE models, as well as monetary and �scal policy implications of adaptive

learning, see Evans & Honkapohja (2012) for a textbook treatment and Woodford (2013) for

a comprehensive review of the more recent work. Much of the earlier literature on adaptive

learning focused on the learnability of Rational Expectations Equilibria and MSV-learning,

focusing on small and temporary deviations from perfect foresight models. Milani (2007) and

Eusepi & Preston (2011) are earlier examples of expectations-driven business cycles and how

MSV-learning can improve the empirical properties of small-scale DSGE models, while Bullard

& Mitra (2002) and Bullard & Eusepi (2014) examine monetary policy implications of this type

of learning.

In more recent work, Slobodyan & Wouters (2012a) and Slobodyan & Wouters (2012b)

show that further deviations from perfect foresight models with the use of small forecasting

rules can lead to further improvements in the �t of a medium-scale DSGE model. On a similar

vein, Quaghebeur (2018) examines �scal policy implications of a VAR-type adaptive learning

rule and �nds that government spending multipliers are larger under adaptive learning. Evans

et al. (2008) and Evans & Honkapohja (2010) examine the implications of adaptive learning for

�scal policy.

While Markov-switching and adaptive learning have both been increasingly popular classes

of time-varying DSGE models in recent years, there is little work on DSGE models that con-

sider a combination of both approaches. Closely related theoretical work includes Branch et al.

(2013) that studies the properties of MSV-learning in Markov-switching models where agents

are informed about regime switches but learn the remaining economic parameters; and Airaudo

& Hajdini (2019) that studies equilibria in a Markov-switching framework where agents use an

optimal AR(1) rule without accounting for regime switches. Empirical studies closely related

to our work include Gust et al. (2018) that examines the ELB episode and forward guidance in

a Markov-switching setup under Bayesian learning, where agents are aware of regime switches

but have to infer about the underlying regime of the economy; and Lansing (2018) that ana-

lyzes the ELB episode in a calibrated setup under adaptive learning where regime switches are

unobserved. Our key di�erence from these empirical papers and one of our key contributions is

to extend their framework to non-rational beliefs, and to estimate the resulting DSGE models

during the ELB episode.

Farmer et al. (2009, 2011) explore a class of Rational Expectations Equilibria (REE) in

Markov-switching models. Since we assume that regimes are never observed, an equilibrium

concept in our framework does not coincide with a Rational Expectations Equilibrium in the

sense of Farmer et al. (2011). Instead, our approach is a Restricted Perceptions Equilibrium

(RPE), where agents' model misspeci�cation permanently keep the economy away from the

underlying REE.
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2 Preliminaries

2.1 Fisher Equation and Long-run E-stability

In this section, we discuss and clarify some dynamic properties and stability conditions that

apply to our modelling approach. We start with a minimal setup that establishes the connection

to the previous literature and allows for an analytical discussion of the problems. We then apply

the concepts to the more general setup that is applied in the rest of the paper. Consider �rst

a simple model of Fisherian in�ation determination without regime switching:
it = Etπt+1 + rt,

rt = ρrt−1 + vt,

it = απt,

(2.1)

where rt is the exogenous AR(1) ex-ante real interest rate, it is the nominal interest rate, πt

is in�ation, and vt is an IID shock process. We assume that monetary policy follows a simple

rule by adjusting nominal interest rate to in�ation, denoted by α.4 After eliminating nominal

interest rate it, the system can be re-written as:πt = 1
α

(Etπt+1 + rt),

rt = ρrt−1 + vt.
(2.2)

We use this small setup as our starting point as it has been extensively analyzed in Davig &

Leeper (2007), which is one of the �rst studies on expectations in a regime switching setup; as

well as in Airaudo & Hajdini (2019), which is the �rst study on small forecasting rules in a

regime switching setup. The standard Minimum State Variable (MSV) REE solution takes the

form of:

πt = drt. (2.3)

In terms of adaptive learning terminology, (2.3) is known as the the Perceived Law of Motion

(PLM). The Rational Expectations Equilibrium (REE) value of d is pinned down by iterating

the PLM forward to obtain the one-step ahead expectations, plugging the expectations back

into the actual law of motion (2.2) and computing the associated �xed point, which yields

d = 1
α−ρ . Hence the law of motion under REE is given by πt = 1

α−ρrt. In this benchmark case,

the equilibrium is determinate if α > 1, i.e. if monetary policy is su�ciently aggressive.

Davig & Leeper (2007) consider scenarios where the interest rate reaction parameter α is subject

to exogenous regime switches. Focusing on a two regime environment, assume that α changes

4For the remainder, we assume that V ar[rt] = 1 to simplify the exposure.
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stochastically between two regimes, st = {1, 2} subject to the transition matrix:

Q =

(
p11 1− p11

1− p22 p22

)
.

Then in�ation dynamics are given as:πt = 1
α(st)

(Etπt+1 + rt),

rt = ρrt−1 + vt,
(2.4)

with α(st = 1) = α1 and α(st = 2) = α2 denoting the regime-speci�c parameters. Using

πi,t = πt(st = i), we can rewrite the model in a multivariate form:[
α1 0

0 α2

][
π1,t

π2,t

]
=

[
p11 p12

p21 p22

][
Etπ1,t+1

Etπ2,t+1

]
+

[
rt

rt

]
. (2.5)

In a REE framework, the presence of regime switches and the corresponding transition matrix

Q is known to agents. Denoting by di the regime-speci�c REE solutions, the corresponding

regime-dependent 1-step ahead expectations are given by:Et[πt+1|st = 1] = (p11d1 + p12d2)ρrt,

Et[πt+1|st = 2] = (p21d1 + p22d2)ρrt.

In other words, agents hold two distinct laws of motion associated with each regime, and they

correctly form their expectations after observing the current regime st. Davig & Leeper (2007)

show that, in this setup, the equilibrium is determinate as long as the long-run Taylor principle

(LRTP) is satis�ed:5

α1α2 > 1− ((1− α2)p11 + (1− α1)p22). (2.6)

A key insight of this principle is that, the long-run dynamics of the model are determinate

even if one of the underlying regimes is indeterminate, provided there is at least one regime

that is su�ciently determinate or the probability of entering into the indeterminate regime is

su�ciently small. In what follows, we �rst relax the assumption of full information to replace

it with that of learning, and then we extend the long-run determinacy insight into the concept

of learnability, i.e. E-stability of equilibria.

Our main deviation from the REE framework is that agents do not directly observe or

take into account the regime shifts that occur in the economy when forming their expectations.

Instead, they hold period-speci�c expectations that are updated each period as new observations

5See Appendix A for further details on the derivation of this condition.
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become available. Regime switches are unknown to agents ex-ante, and only a�ect agents'

expectations ex-post after new observations become available.

Before introducing adaptive learning, it is useful to �rst study the equilibrium properties

of this setup and compare it with the REE counterpart. Assume that the economy evolves

according to (2.4) with two monetary policy regimes, where agents do no observe the regime

switches. Their regime-independent PLM and 1-step ahead expectations are given as follows:

πt = drt ⇒ Etπt+1 = dEtrt+1 = dρrt, (2.7)

where d denotes the agents' perceived coe�cient. The implied Actual Law of Motion (ALM) is

then given by: πt = 1
α(st)

(dρ+ 1)rt,

rt = ρrt−1 + vt.
(2.8)

The assumed form of PLM here does not nest the regime-dependent REE solution. Therefore,

any resulting notion of equilibrium under this scenario cannot coincide with the full-information

REE. Instead, we refer to the resulting equilibrium as a Restricted Perceptions Equilibrium

(RPE), where agents use a restricted and misspeci�ed information set when forming their

expectations.6,7

In order to identify an RPE, we follow Hommes & Zhu (2014) and impose a moment con-

sistency requirement on the model to pin down the value of d associated with the equilibrium:

the coe�cient d determines the perceived correlation between in�ation and real rate of interest

in agents' PLM, i.e. d = E[πtrt]
E[rtrt]

. In an RPE, the unconditional correlation E[πtrt]
E[rtrt]

implied by

the ALM is equal to d. In other words, agents' forecasting rule is consistent with the actual

outcomes on average, but it is misspeci�ed along each regime. The associated unconditional

moment in our example is given as:

E[πtrt]

E[rtrt]
= E[

1

α(st)
dρ+

1

α(st)
], (2.9)

which involves the long-run distribution (i.e. ergodic distribution) of the Markov chain de-

noted by P . Given the transition matrix Q, this follows P = [ 1−p22

2−p11−p22
, 1−p11

2−p11−p22
].8 Then the

6See (Evans & Honkapohja, 2012) for an overview of Restricted Perceptions Equilibria in the adaptive learning
literature.

7In this section we limit our attention to a misspeci�cation related to regime-switches only, while the PLM is
otherwise correctly speci�ed. In our empirical exercises, we also allow for misspeci�cation in the forecasting rule.
See Airaudo & Hajdini (2019) for theoretical properties of such an example, where two types of misspeci�cation
are combined with an AR(1) forecasting rule.

8Note that the ergodic distribution is obtained by solving P ′Q = P .
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underlying RPE coe�cient, which we denote as dRPE, is given by:9

dRPE =
α1(1− p22) + α2(1− p11)

α1α2(2− p11 − p22)− ρα1(1− p22)− ρα2(1− p11)
. (2.10)

Further note that, the regime-speci�c REE solutions (i.e. the solution when the economy is

always in regime i) are given by di = 1
αi−ρ , i ∈ {1, 2}. In this special case, the underlying RPE is

essentially a weighted average of the regime-speci�c equilibria, where the weights are determined

by the long-run distribution of the regimes. Instead of the standard determinacy condition of

REE models, our main concept of interest in this case is E-stability.10 The E-stability principle

determines whether the agents can learn an equilibrium around the �xed-point dRPE by starting

from an arbitrary point d0, and updating their beliefs about the coe�cient each period using

a recursive system as new observations become available. As shown in Evans & Honkapohja

(2012), E-stability is governed by the mapping from agents' PLM to the implied ALM, de�ned

as the T-map. In our example, the T-map is given by:

T : d→ T (d) =
E[πtrt]

E[rtrt]
= (dρ+ 1)

α1(1− p22) + α2(1− p11)

α1α2(2− p11p22)
. (2.11)

The T-map is locally stable if its Jacobian matrix has roots with real parts less than one. When

the local stability condition is satis�ed, the equilibrium is E-stable. Applying this to our RPE,

the associated root and the E-stability condition are given as:

DT (d)

D(d)
=
α1(1− p22) + α2(1− p11)

α1α2(2− p11 − p22)
ρ < 1, (2.12)

which, after re-arranging, yields:

α1α2 >
α1(1− p22) + α2(1− p11)

2− p11 − p22

. (2.13)

This results in a criterion similar to that of LRTP. In order to obtain E-stability, a more

aggressive monetary policy rule α1 is needed whenever (i) the average time spent in regime

1 (given by P1) decreases, (ii) the average time spent in regime 2 (given byP2) increases, or

(iii) the monetary policy rule in regime 2 (α2) becomes less aggressive. This suggests that

overall E-stability holds even if one of the underlying regimes is E-unstable, as long as there

is a su�ciently E-stable regime and the system does not spend too much time in the unstable

regime on average. This is an intuitive extension of Davig & Leeper's insight on long-run

determinacy to the learnability of equilibria, therefore we denote this as the principle of long-

9See Appendix B.1 for details on the derivation of this condition.
10Bullard & Eusepi (2014) shows that there is a tight link between determinacy and E-stability of REE and

in some special cases these conditions may even coincide.
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run E-stability.

2.2 Regime Switches and Constant Gain Learning

The RPE concept and its associated long-run E-stability condition in (2.10) serve as a starting

point to illustrate the model dynamics in our framework, and to draw parallels to previous work

under REE. Building on this, our main point of interest in this paper is to study the transitory

dynamics under adaptive learning when there is a monetary policy regime switch.

We �rst extend the model (2.10) with lagged in�ation in order to also study learning dynam-

ics about persistence. Assume that a fraction ιp of agents have backward-looking expectations

based on the previous period, while the remaining fraction 1− ιp form their expectations ratio-

nally as before. This yields the following model:

it = Ẽtπt+1 + rt,

Ẽtπt+1 = ιpπt−1 + (1− ιp)Etπt+1,

rt = ρrt−1 + vt,

it = α(st)πt,

(2.14)

where Ẽt denotes aggregate expectations operator and Et refers to the Rational Expectations

as before. Assuming again that agents' do not observe the regime switches, the associated PLM

of the rational agents is of the form:11

πt = drt + bπt−1, (2.15)

with the associated T-map: (
d

b

)
→

(
E[(πt − b(st)πt−1)rt]

E[(πt−d(st)rt)πt−1]

E[π2
t ]

)
, (2.16)

where b(st) = ιp
α(st)−(1−ιp)b

and d(st) = (1−ιp)dρ+1

α(st)−(1−ιp)b
.12

Next we introduce adaptive learning into this system, where beliefs about d and b are

updated each period as new observations become available, using a constant-gain least squares

11We assume that rational agents take into account the presence of backward-looking agents when forming
their expectations.

12With the addition of lagged in�ation, the moments appearing in the above expression become analytically
intractable, therefore the values aRPE and bRPE and the associated E-stability conditions are obtained nu-
merically in the examples below. The derivations of the RPE and regime-speci�c equilibria can be found in
Appendix B.3 for a general N dimensional system with m regimes. The example illustrated here is a special
case of 1 dimension with 2 regimes.
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method à la Evans & Honkapohja (2012). Denoting by θ = [d, b]′ and yt = [rt, πt−1]′, the agents

update their regression model (i.e. the coe�cients in their PLM) using:Rt = Rt−1 + γ(y2
t −Rt−1),

θt = θt−1 + γR−1
t yt(πt − θt−1yt),

(2.17)

where γ denotes the gain value, i.e. the weight that agents put into the most recent observa-

tion. A constant gain implies geometric discounting of the past and allows agents to put more

weight into recent observations, thereby allowing them to potentially detect the consequences

of regime switches. We �rst illustrate the model dynamics for a parameterization where both

regime-speci�c MSV-solutions, as well as the underlying RPE are E-stable. Figure 1 shows two

simulations with di�erent gain values and transition probabilities. Panel (a) is an example with

frequent regime switches, p11 = p22 = 0.9, and a small gain value of 0.005. In this case the

learning coe�cients oscillate around the RPE-consistent values, illustrating the stability of the

system. An interesting feature of the RPE is that, while dRPE is between the regime-speci�c

equilibrium values, bRPE is larger than both regime-speci�c values. This suggests that RPE

is not always a simple weighted average of the underlying regime-speci�c equilibria, and that

regime-switching may induce persistence ampli�cation in the system.

Panel (b) shows an example with more persistent regimes, p11 = p22 = 0.99, and a larger

gain value of 0.01. It is readily seen that when the gain value is su�ciently large and the regime

durations are long, the system converges to the regime-speci�c values, i.e. agents forget about

the past regime switches. When the regime shift occurs, there are two possible outcomes for

the learning dynamics: if the RPE and the new regime speci�c value are in the same direction,

as in the case for dt, then the learning process gradually moves towards the direction of the new

regime. If the RPE and the new regime speci�c value are in di�erent directions, such as for bt in

this example, then the learning process �rst jumps in the direction of the RPE, before starting

to gradually move towards the regime speci�c value. This �gure illustrates that, under the right

circumstances with large enough gains and frequent regime shifts, transitioning from one regime

to another may be characterized by a period of temporarily ampli�ed persistence. Importantly,

this suggests that learning of the new regime can be very quick, especially when exiting a very

long regime or entering into a new regime that has not been observed before. These results

are in line with Hollmayr & Matthes (2015), where unanticipated structural change leads to a

temporary period of fast learning and ampli�ed volatility. In our framework, this phenomenon

occurs as a temporary shift towards the RPE.

The characteristics discussed above are particularly important from an empirical viewpoint:

the recent ELB episode is similar to such a switch from a persistent regime to a new regime

that was not experienced in the recent past. This is discussed in further detail in Section 4 in

11



the context of the Smets & Wouters (2007) model.
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(a) γ = 0.005, p11 = p22 = 0.9.
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Figure 1: Learning coe�cients along with the RPE-consistent and regime-speci�c values. The param-

eters ιp = 0.25, ρ = 0.9, α1 = 1.5, α2 = 2, are �xed in both simulations. Given the values of α1 and α2,

both regime-speci�c equilibria and the RPE are E-stable.

2.3 Mean Dynamics

We next consider an extension with the mean dynamics. In the previous two examples, ex-

pectations about the mean are implicitly �xed at the equilibrium value of zero and as such,

expectations are anchored at the equilibrium. Learning about the mean dynamics introduces a

possibility of de-anchoring from the equilibrium, and can therefore be interpreted as an example

of imperfect anchoring as in Busetti et al. (2014).

To motivate the learning dynamics about the mean, we assume that nominal interest rates

react to deviations of in�ation from its non-zero target rate π̄, i.e. it− π̄ = α(st)(πt− π̄). This

yields the following model: 

it = Ẽtπt+1 + rt,

Ẽtπt+1 = ιpπt−1 + (1− ιp)Etπt+1,

rt = ρrt−1 + vt,

it − π̄ = α(st)(πt − π̄),

(2.18)
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where the rational agents' PLM is given by:

πt = a+ bπt−1 + drt, (2.19)

and the T-map: ab
d

→

E[(πt − b(st)Xt−1 − d(st)εt)]

E[ (πt−a(st)−b(st)πt−1)rt
E[r2

t ]
]

E[(πt−a(st)d(st)rt)πt−1]

E[π2
t ]

 , (2.20)

with a(st) = (α(st)−1)π̄+(1−ιp)a

α(st)−(1−ιp)b
, b(st) = ιp

α(st)−(1−ιp)b
and d(st) = (1−ιp)dρ+1

α(st)−(1−ιp)b
. Figure 2 illustrates

two simulations using the same parameterization from before with π̄ = 2, where both regime-

speci�c equilibria and the RPE are E-stable. Panel (a) again shows frequent regime switches

with a small gain value, while Panel (b) shows infrequent switches with a larger gain. We

observe that in this case, aRPE is lower than both regime-speci�c values, which con�rms our

result from the previous section that the RPE may not always be a simple weighted average

of the regimes. The lower value of aRPE suggests that the perceived in�ation target is lower

under RPE than both regime speci�c values. While we observe oscillations near the RPE in

the �rst simulation, the second one jumps to the RPE along with regime switches, followed by

a gradual movement towards the regime-speci�c values as the regime persists.
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(a) γ = 0.001, p11 = p22 = 0.99.
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Figure 2: Learning coe�cients along with the RPE-consistent and regime-speci�c values. The param-

eters π̄ = 2, ιp = 0.25, ρ = 0.9, α1 = 1.5, α2 = 2, are �xed in both simulations. Given the values of α1

and α2, both regime-speci�c equilibria and the RPE are stable.
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2.4 E�ective Lower Bound and Regime-switching

Having illustrated the main concepts, in this section we establish the link between the ELB

constraint and the regime-switching setup. We use a deterministic version of the baseline

3-equation New Keynesian model. Consider the standard Euler and Phillips curve equations:xt = Etxt+1 − σ(it − Etπt+1),

πt = βEtπt+1 + κxt,
(2.21)

with xt output gap and πt in�ation, supplemented with a standard Taylor rule for monetary

policy subject to the ELB constraint: it = max{φππt + φxxt,−r̄∗}. In this section, we take

r̄∗ = 0 without loss of generality and refer to it as the zero lower bound (ZLB) constraint, while

the empirical applications in the next section allow for non-zero values of r̄∗. The monetary

policy rule is approximated as a Markov switching process:13

it = φπ(st)πt + φx(st)xt, (2.22)

where the nominal rate it switches between two regimes: the �rst one takes the form of an

active Taylor rule with φπ(st = T ) > 1 and φx(st = T ) > 0, which is the normal regime when

the ZLB constraint is not binding. The second one follows a pegged interest rate rule with

φπ(st = ZLB) = 0 and φx(st = ZLB) = 0 when the ZLB constraint is binding. Similar to the

previous sections, we assume transition probabilities p11 (for the normal regime) and p22 (for

the ZLB regime), implying ergodic probabilities of P1 = 1−p22

2−p11−p22
and P2 = 1−p11

2−p11−p22
.

A well known result in the literature is that, when monetary policy is inactive, which

corresponds to the ZLB regime in this setup, standard New Keynesian models are indeterminate

and the learning dynamics are E-unstable under plausible parameterizations,14 which leads to

the possibility of de�ationary spirals. In what follows, we establish this result in our regime-

switching framework.

Denoting by Yt = [xt, πt]
′, the system can be re-written as Yt = Γ(st)EtYt+1 with Γ(st) =

1
1+σφx(st)+κσφπ(st)

(
1 σ(1− βφπ(st))

κ κσ + β(1 + σφx(st))

)
. In this simpli�ed form, the associated law of mo-

tion (where agents ignore the presence of regime switches) takes the form of Yt = a, that is,

agents only learn about the means. The implied law of motion is then given by Yt = Γa, and

the corresponding T-map is:

a→ T (a) = E[Γ(st)a]. (2.23)

13See e.g. Binning & Maih (2016), Chen (2017) and Lindé et al. (2017) for earlier work, where the ELB period
is analyzed in a regime-switching framework.

14see Evans & Honkapohja (2010) for a detailed treatment.
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Recall from Section 2.1 that the long-run E-stability condition is satis�ed if the real part of the

largest root associated with the T-map does not exceed unity. Denoting the real part of the

largest root by ρ(st) for each regime st, the long-run E-stability condition is satis�ed in this

case if the weighted average P1ρ(st = T ) + P2ρ(st = ZLB) is inside the unit circle. Figure 3

illustrates the E-stability region for the RPE as a function of the ZLB exit probability 1− p22

for a standard parameterization. First looking at the regime-speci�c roots, we observe that the

E-stability condition always holds for the normal regime, while the ZLB regime is E-unstable.

The E-stability of the RPE depends on how much time the system spends at the ZLB regime

on average (i.e. the ergodic probability), which in turn is determined by the exit probability

from the ZLB regime. We observe that, for the given parameterization, exit probabilities below

5% (which translates into an average of 16.6% of all periods at the ZLB) result in an RPE that

is E-unstable. Hence the system becomes E-unstable if it spends too much time at the ZLB

regime on average: this corresponds to the threshold, after which de�ationary spirals with ever

falling output gap and in�ation become dominant.15
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Largest Root ZLB Regime
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Largest Root Normal Regime (E-stable)

Largest Root RPE

Figure 3: Largest roots for regime-speci�c equilibria and RPE in the New Keynesian model as a

function of the ELB exit probability 1−p22. We use a standard parameterization with σ = 1, β = 0.99,
κ = 0.02, p11 = 0.99. This parameterization closely follows Arifovic et al. (2018). The Taylor rule

coe�cients in the normal regime are φπ = 1.5 and φx = 0.5. The grey area corresponds to the region

where the E-stability does not hold for the RPE.

This example is useful for illustrating the potential E-unstability of the ZLB regime. These

initial results imply that spending too much time in the ZLB regime relative to the normal

regime can destabilize the economy. However, the transition probabilities are exogenous in this

15Further details about the derivations, and a small extension with exogenous AR(1) shocks can be found in
Appendix B.4.
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example and as such, it does not provide an insight on how the economy exits the ZLB. Indeed,

if the ZLB regime is associated with worsening macroeconomic conditions, the economy may

be stuck at the ZLB regime by giving rise to de�ationary spirals and a falling output, which

makes it harder to leave the ZLB. We explore such cases in Sections 4 and 4.6 with endogenous

switching models, where the transition matrix Q is time-varying and dependent on the nominal

interest rates implied by the Taylor rule. In the next section, we �rst present the general

multivariate setup and discuss the empirical methodology.

3 General Setup and Estimation

This section introduces the general calss of linear multivariate models, subject to regime

switches and adaptive learning. Consider the following data generating process:Xt = A(st) +B(st)Xt−1 + C(st)EtXt+1 +D(st)εt,

εt = ρεt−1 + ηt,
(3.1)

where Xt denotes the state-variables that may depend on their lags Xt−1, 1-step ahead expec-

tations EtXt+1 and the structural shocks εt. We assume the exogenous shocks follow a general

VAR(1) process with matrix ρ, while the matrices A, B, C, D and E contain the structural

parameters of the model. A subset of the structural parameters are subject regime switches,

captured by st.
16 The corresponding PLM of agents are period speci�c but independent of

regime switches, given by: Xt = at−1 + bt−1Xt−1 + dt−1εt,

EtXt+1 = at−1 + bt−1Xt + (dt−1ρ)εt,
(3.2)

where we use a period t dating assumption for expectations, i.e. the structural shocks and

contemporaneous variables are jointly determined with the 1-step ahead expectations.17 The

PLM parameters at−1, bt−1 and dt−1 are updated after the state variables are realized, hence

they enter into (3.2) with a lag. The above speci�cation conveniently nests all PLMs that we

use in our estimation exercises, which is discussed below. Plugging the expectations in (3.2)

back into (3.1) yields the implied ALM:

Xt = A(st) +B(st)Xt−1 + C(st)at−1 + C(st)bt−1Xt + (C(st)(dt−1ρ) +D(st))εt, (3.3)

16Note that we abstract away from regime switches in the structural shocks here without loss of generality.
17The alternative is to use period t-1 dating, which assumes a sequential timeline where expectations are

determined based on period t-1 information, after which period t shocks and contemporaneous variables are
determined. The results reported in the paper are not sensitive to this assumption.

16



which can be re-written as:

Xt = at−1(st) + bt−1(st)Xt−1 + dt−1(st)εt, (3.4)

with a(st) = (I − C(st)bt−1)−1(A(st) + C(st)at−1), b(st) = (I − C(st)bt−1)−1B(st) and d(st) =

(I −C(st)bt−1)−1(C(st)(dt−1ρ) +D(st)).
18 Denoting by Φt = [at, dt, bt]

′ and Yt = [Xt−1, εt]
′, the

coe�cients in agents' PLM are updated using constant gain recursive least squares:Rt = Rt−1 + γ(YtY
′
t −Rt−1),

Φt = Φt−1 + γR−1
t Yt(Xt − Φt−1Yt)

′.
(3.5)

The system is characterized by two types of time variation, which can be written in the following

compact state-space form:

St = γ
(st)
0,Φt−1

+ γ
(st)
1,Φt−1

St−1 + γ
(st)
2,Φt−1

ηt, , ηt ∼ N(0,Σ), (3.6)

with St = [X ′t, ε
′
t]
′ and γ

(st)
0,Φt

, γ
(st)
1,Φt

and γ
(st)
2,Φt

conformable matrices in terms of structural param-

eters, which depend on the assumption of the PLM. We next discuss the estimation of this

general model in (3.6).

3.1 Estimation

The standard �ltering algorithm for Markov-switching state-space models is the modi�ed Kalman

�lter by Kim & Nelson ( henceforth KN-�lter): in a Markov-switching model with m regimes,

a dataset of size T leads to mT possible timelines, which quickly makes the standard Kalman

�lter intractable as T grows. The main idea in the KN-�lter is to introduce a so-called collaps-

ing technique to deal with this issue, which amounts to taking weighted averages of the state

vector and covariance matrix at each iteration of the �lter. This e�ectively reduces the number

of timelines at each iteration by an order of m, thereby making the �lter tractable for large

values of m and T . The standard recommendation for collapsing is to carry as many lags of the

states as there are in the transition equations, therefore we consider a version of the �lter with

a single lag. Accordingly, if there are m di�erent regimes in the model, we carry m di�erent

timelines in each period. This introduces m2 di�erent sets of variables in the forecasting and

updating steps, which are collapsed at the end of each iteration to reduce the system to m sets

of variables.

An important question is how to introduce adaptive learning into this framework. We use

18Appendix B.3 provides the �rst and second moments that appear here for a general setup with m regimes.
In this general framework, the values associated with the equilibrium intractable. Therefore the E-stability of
a given model can only be assessed via Monte Carlo simulations.
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an approach that is consistent with the theoretical framework of the previous section: the

agents have a unique PLM based on observables, independent of the regime switches. We

model this formally by collapsing the m di�erent states further at each iteration to obtain the

�nal states estimated by the �lter, which are used for the adaptive learning step. The unique

learning coe�cients are then used in each Kalman �lter timeline of the next period's iteration.19

Adding a set of measurement equations to (3.6) yields the state-space repsentations:St = γ
(st)
0,Φt

+ γ
(st)
1,Φt

St−1 + γ
(st)
2,Φt

ηt, , ηt ∼ N(0,Σ)

yt = E + FSt,
(3.7)

for a set of observable variables yt.
20 The �lter yields the likelihood function as a side-product,

which is combined with a set of prior distributions for Bayesian inference. Importantly, the

�lter is �exible enough to accommodate both exogenous and endogenous regime transition

probabilities, and we discuss both versions in Section 4.

3.2 Initial Beliefs

A �rst practical issue in empirical studies on learning is how to initialize the beliefs. Initial

beliefs have been shown to play a key role in driving the estimation results and model �t in

previous studies, and various di�erent approaches have been considered: Milani (2007) uses an

estimation-based approach, where the initial beliefs are treated as free parameters and estimated

jointly along with the other structural parameters of the model; Slobodyan & Wouters (2012a,

2012b) consider REE-based and training-sample based approaches along with the estimation-

based approach; while Berardi & Galimberti (2017c) proposes a smoothing-based approach.

A common result in these studies is that the results are generally sensitive to initial beliefs,

and the best-�tting approach depends on the speci�c model under consideration; see Berardi

& Galimberti (2017a, 2017b) for a detailed overview on initial beliefs.

Our goal in this paper is to take a minimal deviation from the REE framework and therefore

we follow the approach in Slobodyan & Wouters (2012b) with REE-based initial beliefs. Ac-

cordingly, for each parameter draw, the REE of the model is computed as a �rst step.21 Then

the relevant moments from this equilibrium are used as initial beliefs for the learning models.

19A natural alternative here is to apply the adaptive learning step distinctly to each collapsed state; one
can then take a weighted average of these expectations to obtain the �ltered expectations Our results in the
upcoming sections are not sensitive to such an alternative, but we only present the results under the �rst
approach since it is more in the spirit of our theoretical framework.

20see Appendix C for details on the �lter.
21Since the initial 40 years of our sample is governed by an active Taylor rule, we use the REE solution

consistent with the normal regime.
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3.3 Projection Facilities

A second issue with the estimation of adaptive learning models relates to projection facili-

ties. A well-known issue with constant gain recursive least squares is that the stationarity of

the underlying models is not always guaranteed. Particularly when the PLM involves lagged

state variables, the learning process may occasionally push the system into non-stationary and

explosive regions, even if the underlying equilibrium is E-stable.22

A common method in the adaptive learning literature to deal with these potential instabil-

ities is to impose a projection facility on the model, which forces the model dynamics to be

stationary by projecting the learning coe�cients into the stable region whenever instability is

encountered. The simplest approach is to leave the learning coe�cients at their previous value

if the update leads to non-stationarity, which is the method adopted in Slobodyan & Wouters

(2012a). Speci�cally in our estimations, we set up the projection facility as follows: if the learn-

ing update pushes the largest root of the ergodic distribution associated with the model (3.6)

outside the unit circle in a period, then we stop updating the learning coe�cients for that pe-

riod. In other words, we allow the regime-speci�c dynamics to be temporarily non-stationary as

long as the underlying implied ergodic distribution remains stable. Importantly, this approach

allows the agents' PLM (3.2) to become temporarily explosive as long as the underlying ergodic

distribution is stable. This approach re�ects our inclination to keep the projection facility as

inactive as possible.

3.4 Learning Rules

Our discussion about learning up to this point has been based on the information set consistent

with the MSV-REE solution, where the only source of misspeci�cation is due to unobserved

regimes. However, in principle, any information set may be considered in the agents' PLM. In

our estimation exercises, we will focus on three types of learning rules that have been frequently

used in the literature:

(i) An MSV-consistent rule as discussed before. For this rule, the limiting case with no

learning (γ = 0) corresponds to an equilibrium consistent with a REE of the normal

regime, where agents do not pay any attention to the potential ELB episodes.

(ii) A VAR-like rule, which assumes unobserved shocks but otherwise keeps the same set

of state variables as in the MSV solution.23 Chung & Xiao (2013) analyze a similar setup

22We do not explore the formal link between indeterminacy, E-unstability and the unstability due to updating.
However, since an inactive monetary policy implies indeterminacy and E-unstability for the regime-speci�c
dynamics, occasional escapes to non-stationary regions are more frequent when the ELB constraint is binding.

23In terms of (3.2), this assumes d is a zero matrix, but keeps the same b matrix as in the MSV solution.
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and de�ne it as a Limited Information Equilibrium. Therefore we refer to this learning

rule as Limited Information Learning (LIL).

(iii) A parsimonious AR(1) rule, which ignores cross-correlations and assumes a univariate

process for each forward-looking variable.24 This type of univariate forecasting rules have

been applied in recent past to improve the empirical �t of otherwise standard DSGE

models, see e.g. Slobodyan & Wouters (2012b), Gaus & Gibbs (2018), Di Pace et al.

(2016) and Hommes et al. (2019).25

4 Estimation of the Smets-Wouters Model

4.1 Priors and Measurement Equations

In this section we estimate a version of the Smets-Wouters (2007) model under adaptive learning,

subject to the ELB. The details of the model are omitted here for brevity, see Appendix D for a

detailed explanation of the log-linearized model equations. We have two minor deviations from

the benchmark model: �rst, we assume the price and wage mark-up shocks follow exogenous

AR(1) processes, instead of the original ARMA(1,1) assumption.26 Second, we shut o� the

�exible economy side of the model, which is used in the original model to obtain the potential

output and the associated level of output gap. Instead, we follow Slobodyan & Wouters (2012a)

and derive the output gap from the natural level of output, based on the underlying productivity

process. This has the advantage of reducing the size of the model, thereby making its estimation

computationally less demanding. The rest of the model, along with the prior distributions and

measurement equations remain unchanged. The monetary policy rule follows the same 2-regime

structure as in Section 2.4 with some additional parameters, given by:it(st = T ) = ρit−1 + (1− ρ)(φππt + φxxt) + φ∆x(xt − xt−1) + εTr,t,

it(st = ELB) = εELBr,t ,
(4.1)

where φπ and φx are in�ation and output gap reaction parameters as before, while φ∆x and ρ

are output gap growth reaction and interest rate smoothing respectively. εTr,t denotes an AR(1)

monetary policy shock during the normal regime with persistence ρr and standard deviation

ηTr , while ε
ELB
r,t is an i.i.d. policy shock process during the ELB regime with standard deviation

24In terms of (3.2), this assumes d is a zero matrix and b is diagonal.
25A number of experimental studies also provide support in favor of small, parsimonious forecasting rules.

See e.g. Anufriev et al. (2019).
26This is due to the fact that, as shown in Slobodyan & Wouters (2012a), these shock processes are typically

close to being white noise when expectations are based on small learning rules, in which case the AR(1) and
MA(1) terms are close to being locally unidenti�ed. Therefore we assume away the MA(1) terms in these shocks.
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ηELBr .27 The estimation is based on seven observables on the U.S. data over the period 1966:I-

2016:IV as follows: 

d(log(yobst )) = γ̄ + (yt − yt−1),

d(log(cobst )) = γ̄ + (ct − ct−1),

d(log(invobst )) = γ̄ + (invt − invt−1),

d(log(wobst )) = γ̄ + (wt − wt−1),

log(lobst ) = l̄ + lt,

(log(πobst )) = π̄ + πt,

(log(iobst )) = ī(st) + it,

where d(log(yobst )), d(log(cobst )) , d(log(invobst )) and d(log(wobst )) denote real output, consump-

tion, investment and wage growths with the common growth rate γ̄ respectively, while log(lobst ),

(log(πobst )) and (log(iobst )) denote (normalized) hours worked, in�ation rate and federal funds

rate respectively. We assume a regime switch in the steady-state level of nominal interest rates,

denoted by ī(st = T ) = īT and ī(st = ELB) = īELB respectively. We use quarterly data over

the period 1966:I to 2016:IV in our estimations.

We �rst discuss the estimation results for the exogenous switching models, for which there

are �ve additional parameters due to regime switching and learning that are not present in the

benchmark REE model. In terms of the regime transition probabilities, we estimate the exit

probabilities from the normal and ELB regimes, denoted as 1−p11 and 1−p22 respectively. We

use uniform priors over [0, 1] to assess how informative the data is about these two parameters.

This di�ers from previous studies in the literature where typically more informative priors have

been used, see e.g. Ji & Xiao (2016), Chen (2017) and Lindé et al. (2017), all of which use tight

Beta priors for the transition probabilities. For the constant gain parameter, we use a Gamma

prior with mean 0.035 and standard deviation 0.03, which follows from Slobodyan & Wouters

(2012b). This distribution permits a prior credible interval over the range [0, 0.1] for the gain,

which is consistent with previous �ndings in the learning literature. For the standard deviation

of monetary policy shocks of the ELB regime ηELBr , we use a Gamma distribution with mean

0.03 and standard deviation 0.01. And �nally for the steady-state level of interest rates at the

ELB regime, we use a normal distribution with mean 0.05 and standard deviation 0.025.

The model features seven forward looking variables, namely the rental rate of capital rkt,

asset price qt, consumption ct, investment It, labor lt, in�ation πt and real wages wt; along with

seven AR(1) structural shocks, namely technology εa,t, government spending εg,t, risk premium

εb,t, investment-speci�c technology εI,t, monetary policy εTr,t and εELBr,t in normal and ELB

27The presence of monetary policy shocks at the ELB is motivated by the fact that the nominal rates in the
U.S. were not constant during 2009-2016 but was rather characterized by small changes.
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regimes, and two mark-up shocks in prices εp,t and wages εw,t respectively. Further, there are

seven state variables that appear with a lag in the model, namely, consumption ct, investment

It, output yt, in�ation πt, real wage wt, nominal interest rate it and capital kt. This translates

into a learning matrix of size 7x15 for the MSV model (intercept, lagged state variables and

shocks), 7x8 for the LIL model (intercept and lagged state variables) and 2x1 for each variable

in the AR(1) model (intercept and own lagged variable).

4.2 Posterior Results: Exogenous Switching Models

Using the KM-�lter as discussed in the previous section, we �rst obtain the posterior mode of

the likelihood using standard optimization algorithms. The estimated mode is used to initialize

the MCMC to sample from the posterior distribution, for which we use a standard Random

Walk Metropolis Hastings with an adaptive covariance matrix for the proposal density. We

simulate two chains of length 250000 for each model under consideration, and the �rst 40%

of the chains is discarded as the transient period. The remaining 150000 draws are checked

for convergence using standard tests of Geweke (1992) within the chain, Gelman et al. (1992)

between the chains.

Tables 2 and 3 show the results for the three learning models, as well as the MS-REE model

and REE benchmark case. First comparing the (log-) marginal densities of the models, we ob-

serve that the Markov-Switching REE model (REE-MS) yields a substantial improvement over

the benchmark REE: based on the Modi�ed Harmonic Mean (MHM) estimators of -1194 and

-1145, we obtain a Bayes Factor of 21.54 in favor of the Markov-switching model. Next com-

paring the learning models with REE-MS,28 we observe that all three learning models yield an

improvement over REE-MS, but to varying degrees: MSV-learning results in a small (and neg-

ligible) improvement, while the LIL and AR(1) models result in relatively large improvements.

The corresponding Bayes Factors relative to the REE benchmark are 21.97, 35.87 and 31.09 for

MSV, LIL and AR(1) respectively, which translate into Bayes Factors of 0.43, 14.32 and 9.55

relative to the REE-MS model. This indicates that, while the time-variation due to expecta-

tions under MSV-learning does not generate a meaningful improvement in the model �t, the

LIL and AR(1) models yield a further improvement over REE-MS. Among the three learning

models, LIL speci�cation emerges as the preferred model based on the marginal densities.

The estimated parameters generally remain similar across REE and REE-MS models. The

di�erences between these models and the MSV-learning also remain modest. But when we

compare the REE and REE-MS models to the remaining two learning models of LIL and

28It is readily seen from Tables 2 and 3 that, while the Laplace and MHM estimators of marginal likelihood
result in similar values for REE and REE-MS models, there is some discrepancy between these two estimators
for the learning models. Therefore our discussion is based on the MHM estimator throughout the remainder of
the paper.
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AR(1), some notable di�erences emerge.

We start by discussing the estimated regime transition probabilities and gain parameters.

The exit probability from the normal regime, 1− p11, is similar across all four regime-switching

models. The posterior mean for this parameter oscillates between 0.99% and 1.14%, which

translates into an expected duration between 101 and 88 quarters. The HPD intervals for

this regime are overlapping across all models. However, the exit probability from the ELB

regime, 1 − p22, turns out quite di�erent between REE-MS and the learning models. The

REE model attaches a high probability to leaving the ELB regime: at the posterior mean, the

exit probability is nearly 30%, implying a short expected duration of only 3.3 quarters. For the

learning models, this number decreases to values between 3.8% and 6.6%, with implied expected

durations between 15 and 26 quarters, closer to the empirical duration of the ELB for the U.S.

economy. It is also important to note that the implied HPD bands under REE and all three

learning models for this parameter are mutually exclusive: the highest upper bound of the 90%

HPD interval across the learning models is 15.3% LIL model, whereas the lower bound for REE-

MS model is at 23%. This shows that the REE-MS model favors a low expected ELB duration

due to agents' expectations. But since the model equates subjective and objective expectations

about leaving the ELB regime, this creates a trade-o� between generating a short expected

duration on the agents' part, and matching the empirical duration of the ELB episode. Over

the duration of the ELB period, this result suggests that the agents are constantly surprised as

the regime persists, since they expect to stay at the ELB for only 3.3 quarters. The learning

models, by breaking the tight link between subjective and objective expectations, allow the

model to generate a more persistent and realistic ELB duration.

The resulting �ltered (one-sided) average regime probabilities for some of the key periods

are reported for all regime-switching models in Table 1.29 We observe some di�erences in the

estimated probabilities across models both during the entry and exit: in 2008Q3, the AR(1)-

learning and REE-MS models attach a 0% probability to the ELB regime, while this number is

34.6% for the LIL model, and 96.6% for the MSV-learning model. The probabilities increase to

67.1% and 91.8% in 2008Q4 for the AR(1) and REE-MS models, while they are at 98.5% and

and 99.9% for the LIL and MSV models. From 2009Q1 onwards, all models attach a probability

near 100% to the ELB regime until the end of 2015Q1.

Compared to the estimated entry probabilities, we observe larger di�erences around the

ELB exit dates. The AR(1) and REE-MS models imply that the economy exits the ELB

regime from 2015Q2 onwards, with probabilities near 0% until the end of our sample period. In

this case the LIL model yields similar results to these two models, with ELB regime probabilities

oscillating around 10% after 2015Q1. Compared to the other three, the MSV model yields a

29The probabilities are obtained by averaging 10000 runs of the �lter, where the parameter draws are taken
from the last 20% of the MCMC simulations with a thinning factor of 0.2.
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di�erent result, where the ELB regime probability stays close to 100% until the end of our

sample period. The observed di�erences in both the entry and exit result from the interest

rates implied by the Taylor rule during the normal regime. Recall that monetary policy reacts

to in�ation and output gap during the normal regime. While in�ation is an observed variable

(and thus it is common across the models), the output gap process is unobserved and estimated

di�erently in each model. As such, the di�erences in the estimated Taylor rule parameters, as

well as the di�erences in the �ltered output gap processes contribute to the di�erences between

the estimated regime probabilities.

Among the learning models, the estimated gain parameter is smallest for the MSV-learning

model with a mean of 0.0012, and highest for the LIL model with a mean of 0.0064. Compared

to the LIL model, the AR(1) model yields a slightly lower gain with a mean of 0.005. These

values suggest that the MSV-learning model with the largest information set results in the

slowest update of learning coe�cients, while the remaining two models generate comparable

levels of updating speed. The implications for the time-variation in the learning coe�cients

will be discussed further in the next subsection.

Next we turn to shock and persistence parameters that mainly a�ect the autocorrelation

and cross-correlation dynamics in the model. Some parameters that have similar e�ects on

model dynamics are discussed in groups. The �rst of these groups is habit persistence λ and

risk premium shock persistence ρb, both of which generate persistence in consumption Euler

and the asset pricing equations. We observe that, on the one hand for REE and MSV-learning

models, habit persistence is lower with values of 0.75 and 0.76, compared to the other three

models with values between 0.78 and 0.85. On the other hand, for the low habit models, the

shock persistence is somewhat higher with values of 0.45 and 0.42, compared with the other

high habit models where the persistence varies between 0.25 and 0.34. Overall, all parameters

are within the HPD bands of each other, suggesting similar consumption and asset pricing

dynamics across all models.

Next considering wage dynamics, we discuss the wage stickiness ξw, wage indexation ιw and

wage mark-up shock persistence ρw: these parameters mainly a�ect the wage setting dynamics,

and it is readily seen that all three parameters are estimated at similar values across REE,

REE-MS and MSV-learning models. In particular, we observe high degrees of stickiness varying

between 0.93 and 0.94, as well as high degrees of indexation varying between 0.79 and 0.82.

This is combined with low shock persistence values in the interval [0.07, 0.12]. For the LIL and

AR(1) models, we observe similarly low levels of shock persistence with values of 0.14 and 0.1

respectively, but in these models we also obtain a lower wage stickiness with 0.82 and 0.76,

combined with a lower wage indexation with 0.67 and 0.55 respectively. This suggests that the

change in the information set from MSV-learning to LIL and AR(1)-learning results in more

persistence, which in turn yields smaller estimates for these friction parameters.
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Looking at the Phillips curve and in�ation dynamics with a focus on price stickiness ξp, price

indexation ιp and price mark-up shock persistence ρp, we observe a similar story compared to

the wage dynamics. The parameter estimates are similar across REE, REE-MS and MSV-

learning models with a price stickiness between 0.79 and 0.83, a price indexation between 0.1

and 0.11 and a shock persistence between 0.7 and 0.78. This suggests that the roles of shock

persistence and indexation change for these models compared to the wage setting dynamics.

For the LIL and AR(1) models, the price stickiness comes out similar to the other models with

0.79 and 0.74, while the price indexation is somewhat higher with 0.27 and 0.29. However, this

slightly larger indexation is o�set by a substantially lower shock persistence with 0.08 and 0.05

respectively. Taken together, these parameters suggest that LIL and AR(1) models generate

more persistence internally through expectations, which reduces the reliance on the exogenous

persistence parameters.

Among the remaining shocks, we observe a similar di�erence in the estimated investment

shock persistence ρi, which is lower under LIL and AR(1) models with 0.59 and 0.52, while

this number increases to values between 0.76 and 0.81 in the remaining models. Similar to

the in�ation and wage dynamics, this suggests more internal persistence for the investment

dynamics under LIL and AR(1) models. Due to the di�erences in estimated persistence pa-

rameters, the standard deviations for risk premium and investment shocks, ηb and ηi, turn out

higher under LIL and AR(1) models compared to the others. These larger standard deviations

make up for the lower persistence parameters in the two models, resulting in similar levels of

volatility for the corresponding AR(1) shock processes. Finally, the government spending and

productivity shocks are both similar across all models speci�cations in terms of persistence and

standard deviations: the productivity shock persistence ρa varies between 0.94 and 0.98, while

the government spending shock persistence varies between 0.98 and 0.99. Similarly, the impact

of productivity on government spending, captured by ρga, varies between 0.5 and 0.53 across

all models.

In terms of the measurement equation parameters, we �nd that the estimated steady-state

of in�ation π̄ is somewhat lower under LIL and AR(1) models with 0.63 and 0.67 respectively,

while it is between 0.73 and 0.76 among the remaining models. This is due to the perceived

mean dynamics: for these two models, the perceived mean remains substantially above zero over

the estimation period, compared to the MSV-learning model where the perceived mean varies

very little prior to the crisis, and the no-learning models where the perceived mean remains

�xed at zero. For the remaining two parameters, the common growth rate γ̄ turns out similar

across all models with values between 0.38 and 0.41, while the steady-state labor l̄ yields large

di�erence across all models accompanied by wide HPD intervals, suggesting a large uncertainty

around the estimates for this parameter.

We do not observe notable di�erences in the remaining parameters. In particular, the
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monetary policy parameters are similar across all models, with HPD intervals well within the

range of each other. In�ation reaction φπ ranges between 1.35 and 1.72 across all models,

while these number are [0.85, 0.89] for interest rate smoothing ρ, [0.06, 0.12] for output gap

reaction ry, and [0.14, 0.19] for output gap growth reaction rdy. Similarly, for Frisch elasticity

of labor supply 1
σl
, we �nd values between 0.38 and 0.55, while for elasticity of intertemporal

substitution 1
σc
, these values turn out to be 0.77 and 0.93. The posterior mean for capital

adjustment cost φ takes on values between 4.84 and 6.47 (with relatively large HPD bands, so

that none of the estimated HPD bands are mutually exclusive), while the share of �xed cost

in production φp oscillates between 1.53 and 1.64. Similarly, the capital utilization adjustment

cost ψ remains at comparable levels across all models with values between 0.64 and 0.77, and

the share of capital in production α ranges between 0.17 and 0.19. The household discount

factor β, de�ned as β = 1

1+ β̄
100

ranges between 0.997 and 0.998, given the estimated values of β̄.

the prior distribution, regardless of the model speci�cation and the assumed PLM.

he persistence of investment shock also becomes substantially smaller.

Date Model
AR(1) LIL MSV REE-MS

08Q2 0% 0% 0% 0%
08Q3 0% 34.6% 96.6% 0%
08Q4 67.1% 98.5% 99.9% 91.8%
09Q1 95.6% 98.9% 99.9% 99.3%

15Q1 99.6% 99.6% 99.9% 98.1%
15Q2 0.6% 9.4% 99.4% 0%
15Q3 1.2% 13.2% 98.4% 0%

Table 1: Estimated ELB regime probabilities during some of the important periods.
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4.3 Learning Coe�cients

Our simulation analysis in Section 2 suggests that regime switches, combined with su�ciently

large gain values may lead to a jumping e�ect on some of the learning coe�cients. In this section,

we discuss the implied time-variation in our estimated learning models and check whether

the jumping arises in some of the learning coe�cients during the switch to the ELB period.

Among the seven forward-looking variables, we focus on three variables that are characterized

by relatively large changes during the crisis period and the subsequent switch to the ELB

regime, namely asset prices qt, consumption ct and investment It. The general pattern is that

the learning coe�cients are more sensitive and more to the ELB switch under the AR(1) and

LIL models, which is not surprising since the MSV model has the smallest estimated gain.

Further, we observe that the learning process reacts to the crisis through di�erent coe�cients

depending on the forecasting rule, which is discussed further below.

Figure 4 shows the perceived mean and persistence coe�cients for the AR(1)-learning model,

along with the corresponding 90% HPD intervals.30 For all three variables, the perceived

means jump down immediately following the crisis, which is more pronounced for asset prices

and investment compared to consumption. For the perceived persistence parameters, there

are sizeable upward jumps for asset prices and investment, while for consumption there is a

smaller jump in the opposite direction. As such, the learning patterns for investment and asset

prices, and to a smaller degree also consumption, show similarities to the simulation exercises

in Section 2. The same results also hold labor lt and rental rate of capital rkt with upward

jumps in perceived persistence and downward jumps in perceived mean, whereas for in�ation

and real wage these structural breaks do not arise since there are also no sharp changes in the

data.31

Figure 5 shows a selected subset of the learning coe�cients for the LIL model.32 As men-

tioned above, the learning processes react di�erently depending on the forecasting rule, which

already becomes visible by comparing the AR(1) and LIL models. Looking at the perceived

mean parameters, it is readily seen that the drops during the crisis period are substantially

smaller. However, looking at the second and third columns, we observe that the feedback from

lagged interest rates and in�ation jump. Particularly for lagged interest rate, the jumps are to-

wards zero, suggesting a weakened impact from interest rates. Similarly the last column shows

the feedback from lagged investment, which show the jumping pattern during the crisis period,

30In order to compute the HPD intervals for the learning coe�cients, we use the �nal 20% of the MCMC
sample for each model, which is further thinned with a factor 0.2, yielding a sample size of 10000 for the
parameters. We then re-run the �lter over these parameter draws to to obtain the credible intervals for the
learning coe�cients.

31The corresponding �gures for these variables are omitted for brevity.
32Similar to the AR(1) model, only a small portion of the learning coe�cients are displayed given the size of

the learning coe�cient matrix.
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although to a much smaller extent for the asset prices.33

Finally, Figure 6 shows some of the learning coe�cients for the MSV-learning model. In this

case, the largest change arises in the perceived mean coe�cients, all of which start to rapidly

decrease following the crisis. These variables show a disproportionately large response following

the crisis, compared to their pre-crisis �uctuation levels. This large post-crisis response also

helps to explain the small estimated gain in the MSV model. While a larger gain could generate

more �uctuations pre-crisis and possibly improve the model �t, it would also make the post-

crisis response substantially larger. The following two panels, similar to the LIL model, show

the feedback from lagged interest rates and in�ation respectively. In this case we observe more

gradual responses rather than jumps, particularly for interest rates, which is not surprising given

the small gain value. Nevertheless, we observe a similar change in direction for interest rates

where the parameters move towards zero, suggesting a smaller impact from interest rates on

these variables. The last column shows the perceived correlation parameters between the given

variables and government spending process, which is of particular interest for the MSV model

since the other two models assume unobserved shocks. We see that the perceived correlation

moves away from zero for all three variables, suggesting a larger impact from an increased

government spending. This is in line with the perceived weakened interest rate response, since

it makes monetary policy less likely to o�set any changes in government spending.

To see the e�ect of these changes in the perceived mean coe�cients on the model �t, Figure

7 plots the in-sample forecasts for the growth rates of output, consumption, investment and

wages for the MS-REE and all three learning model.34 A known issue with REE models over

the post-crisis period is the over-prediction of these growth rates: the sudden downward shift

in the interest rates implies an increase in the growth rates of the model variables, whereas in

fact the growth rates have been slightly lower than the pre-crisis historical averages for output,

consumption and investment. As a consequence, the models tend to over-predict these variables

if no additional structural break is introduced into the model. Figure 7d shows that this is

indeed the case under MS-REE for the growth rates of output, consumption and investment.

As opposed to this, Panels a-c in Figure 7 show that this over-prediction issue does not arise in

the learning models. We interpret this downward shift in the learning models as a consequence

of the time-variation in the learning coe�cients. Accordingly, the lower growth rates over the

post-crisis period emerge as a simple consequence of a pessimistic wave re�ected in the perceived

mean coe�cients.

33Note that we omit the learning coe�cients on own lagged variables with the exception of investment: the
lagged asset price is not present in the learning matrix, and the response of consumption to lagged consumption
does not show a meaningful change over the relevant period.

34Hence, these plots simply break down the log-likelihood of each model to period-speci�c increments.
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and investment respectively, whereas q̃t, c̃t and Ĩt denote their demeaned counterparts. The shaded area
corresponds to 2008Q4-2015Q1, which is the period where all models agree that the ELB constraint is

binding.

31



66
71

77
82

88
93

99
04

10
16

-0
.50

0.
51

1.
5

E
[q

t
]

66
71

77
82

88
93

99
04

10
16

-4-3-2-101

E
[q̃

t
r̃ t
−
1
]

66
71

77
82

88
93

99
04

10
16

-2-1012345

E
[q̃

t
π̃
t−

1
]

66
71

77
82

88
93

99
04

10
16

-0
.3

-0
.2

-0
.10

0.
1

0.
2

E
[q̃

t
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4.4 Impulse Responses

Having established the di�erences between the MS-REE and learning models in terms of the

model �t, estimated parameters and learning coe�cients, we next discuss some of the impulse

response functions (IRFs) between learning and REE-MS. For the learning models, we focus

on the period speci�c conditional IRFs over 2002Q1-2016Q4, which are presented in Figure 8

for output. The black and red lines at the left- and right-most sides correspond to the impulse

responses for the REE-MS model under the normal and ELB regimes respectively. We focus

on four shocks, namely the productivity ηa, risk premium ηb, government spending ηg and price

mark-up ηp. For the learning models, the IRFs during the period 2008Q4-2015Q1 are computed

under the ELB regime, while the remaining IRFs are computed under the normal regime.35

The learning IRFs are characterized by two jumps in 2008 and 2015, which correspond to

the ELB entry and exit periods. The jumps show that there are large di�erences between the

IRFs calculated under the normal and ELB regimes. The overall time variation before and after

the crisis is di�erent for each model. For the AR(1) model in the �rst panel, the time variation

for all shocks is relatively small compared to the jump in 2008. For the LIL model, there is more

time variation after the crisis period. In particular for productivity and government spending

shocks, the IRFs gradually move in the direction of the REE-MS (i.e. the red line), until the

system switches back to the normal regime in 2015. For the MSV-learning model, we observe a

gradual movement towards REE-MS impulse response during the ELB regime. These patterns

reveal that the learning process manifests itself in the IRFs as a slow convergence towards

the REE-MS model for the LIL and MSV models. As such, the learning and rational models

generate di�erent impulse responses at the beginning of the ELB regime, where the di�erence

slowly diminishes as the system spends more time in the ELB regime.

A second important point related to IRFs is the di�erence between regime speci�c impulse

responses for learning and REE-MS models: the di�erence between regime-speci�c impulse

responses under REE-MS models (i.e. the di�erence between black and red lines) is typically

larger than the di�erence for learning models. To examine this more formally, we consider

the following exercise: we take �ve year periods during the normal regime before the crisis

(2002:I-2006:IV) and during the ELB regime after the crisis (2010:I-2014:IV). For the learning

models, we compute the median di�erences in the impulse responses between the two regimes,

along with the minimum and maximum di�erences in the IRFs to serve as a pseudo con�dence

interval for these di�erences. Figure 9 plots these IRF di�erentials, along with the corresponding

di�erence under REE-MS case. What becomes quickly evident is that, the di�erences in learning

35In other words, we ignore the minor di�erences between the estimated regime probabilities during the ELB
entry and exit for the learning models. Alternatively, we can compute the IRFs under both regimes and average
them using the estimated regime probabilities. While this generates nearly identical results, it mixes up the
e�ects of learning and regime uncertainty during the transition period.
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models are smaller than the di�erences in the REE model in a majority of the cases: with the

exception of the risk premium shock in LIL and MSV models, the black line (learning model)

and the associated pseudo con�dence interval remains below the blue line (REE model). This

result suggests that the REE-MS model overestimates the impact of the ELB regime on the

propagation of shocks, relative to the learning models.

An implication of these di�erences in impulse responses is on �scal multipliers: a standard

�nding with the REE models is that �scal multipliers are typically larger when the ELB con-

straint is binding, compared to when it is not binding. Figure 10 shows the regime-speci�c

cumulative �scal multipliers for the REE-MS and all three learning models.36 All learning

models con�rm that there is an increase in the �scal multiplier at the ELB regime, but the

magnitudes are di�erent. Over a 10-year period, the REE-MS model implies that the cumula-

tive multiplier is up to 3.5 times larger in the ELB regime, compared to the normal regime. For

the LIL and MSV-learning models, the ratio remains similar to the REE-MS model up to 12

quarters, after which it remains below the REE-MS ratio over all horizons: for the LIL model,

the ratio reaches a maximum of 3, while for the MSV-learning model the maximum ratio is

around 2.5. For the AR(1) model, the ratio is even smaller, with a maximum ratio staying

below 2. These results imply that the impact of the ELB constraint on �scal multipliers is

di�erent under learning models: while the short-term e�ects are ambiguous, the multipliers are

uniformly smaller under all learning models over longer horizons.

4.5 Posterior Results: Endogenous Switching Models

In this section, we discuss the estimation results of the learning models with endogenous switch-

ing. While this does not lead to important changes in terms of the estimation results and

parameter values, the presence of endogenous transition probabilities serve as an important

stepping stone for the counterfactual simulations that we consider in Section 4.6. We de�ne

the transition probabilities for the normal and ELB regimes as follows:

p11(t) =
θ

θ + exp(−φT (i∗t − ī∗))
, p22(t) =

θ

θ + exp(φELB(i∗t − ī∗))
,

with 1− p11 the exit probability from the normal regime, and 1− p22 the exit probability from

the ELB regime. i∗t denotes the shadow rate, de�ned as follows:

i∗t = ρi∗t−1 + (1− ρ)(φππt + φxxt) + φ∆x∆xt.

36The �scal multiplier is computed as FM =

∑N
i=1

∂yi
∂ηg∑N

i=1
∂gi
∂ηg

, i.e. the cumulative response of output to a one

standard deviation shock, divided by the cumulative response of government spending process over the same
period. In the �gures we set N = 40, which yields multipliers up to 10 years.
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Figure 8: Output: Comparison of learning IRFs with REE IRFs. Each IRF shows a one standard

deviation shock of ηa,ηb,ηg,ηp respectively.
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Figure 9: Output: Impulse response di�erentials between normal and ELB regimes.
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Figure 10: Comparison of cumulative �scal multiplier ratios between REE and learning models over

the normal and ELB regimes.

This equation de�nes the shadow rate as the interest rate that would prevail in the absence

of monetary policy shocks and the ELB constraint. According to our transition functions,

the probability of entering the ELB regime increases as the shadow rate approaches zero or

falls below zero. In our estimations, we �x the �rst hyperparameter θ = 1, and estimate the

second hyperparameter for each regime, φT and φELB, using a Gamma prior with mean 0.2 and

standard deviation 0.1. The parameter determines the shape of the transition function: large

values lead to a sharp change in the transition probability as interest rates get close to zero,

while low values lead to a more gradual change in the transition probability.

Tables 4 and 5 show the estimation results for all three learning models. For the LIL and

MSV-learning models, the marginal likelihood is better compared to their exogenous switching

counterparts, while for the AR(1) model there is no discernible di�erence. For the hyperpa-

rameters of the transition probabilities, the entry and exit parameters remain fairly close to

each other. For the AR(1) model, the parameter on exiting the normal regime is lower at

0.1 compared to the ELB parameter at 0.18, which suggests that the ELB entry function is

smoother than the ELB exit function. Nevertheless, these two parameters have relatively large

HPD bands covering both sharp and smooth cases of the transition functions, suggesting that

the exact shape of the function is not well identi�ed for the transition to and from the ELB

regime.

Table 6 shows the estimated regime probabilities, along with the estimated shadow rates.
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Compared with the exogenous switching models, we observe that the regimes are estimated with

more certainty, since the regime probabilities are estimated at 0% or 100% in the endogenous

switching case. During the ELB entry, we observe a similar pattern across the learning models

compared to the exogenous switching case: the AR(1) model enters the ELB regime from

2008Q4 onwards, while the LIL and MSV models enter the regime from 2008Q3 onwards. As

such, 2008Q3 is the only period with disagreement among the models, and they all agree that

the system is in the ELB regime from 2008Q4 onwards.

During the exit, we again observe similar di�erences between the models compared to the

exogenous switching case. While the AR(1) model generates a return to the normal regime

from 2015Q2 onwards, the MSV and LIL models remain in the ELB regime until the end of

our sample period. As such, the only di�erence during the exit between the endogenous and

exogenous switching cases arises in the LIL model, which showed a pattern similar to the AR(1)

model in the previous case.

The patterns observed in the estimated shadow rates are consistent with the estimated

regime probabilities. It is readily seen that the AR(1) model is characterized by higher shadow

rates both during the crash in 2008, and after the recovery in 2015. As a result, while the

the shadow rate under the AR(1) model returns to positive levels by the end of the sample,

the rates under LIL and MSV models are still in the negative domain. As already discussed

in the exogenous switching section, the observed di�erences in the shadow rates are a result

of both the estimated Taylor rule parameters, as well as the di�erences in the �ltered output

gap processes. The AR(1) model predicts a smaller drop in the output gap process compared

to the other two models.37 This is combined with a higher interest rate smoothing parameter

(and therefore a smaller initial reaction) that leads to a smaller drop in the estimated shadow

rate. Similar to the exogenous switching models, we do not disentangle these e�ects further,

but rather interpret the di�erences as the uncertainty surrounding the ELB exit period.

To illustrate the results, Figure 11 shows the estimated shadow rate for the AR(1) model

for the last 15 years of the sample, from 2001Q1 onwards. The implied time path of the shadow

rate and the transition functions for the other two models look fairly similar, which are omitted

here.38 We use the endogenous switching models to consider a set of counterfactual simulations

over the ELB period in the next section.

37The di�erences in the output gap processes in turn are due to di�erences in the �ltered productivity
processes. A smaller drop in productivity in the AR(1) model leads to a smaller drop in the output gap process.

38One di�erence between the AR(1) model and the other two learning models, as already discussed, is that
the shadow rate is characterized by a smaller drop in the AR(1) model during the entry to the ELB regime.
Other than this di�erence in levels, the implied pattern in the shadow rates is similar across the models.
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Date Model
AR(1) LIL MSV
ELB prob. Shadow rate ELB prob. Shadow rate ELB prob. Shadow rate

08Q3 0% 0.78 0% 0.4 0% 0.36
08Q3 0% 0.37 100% -0.12 100% -0.21
08Q4 100% -0.27 100% -0.92 100% -1.06
09Q1 100% -0.64 100% -1.43 100% -1.58

15Q2 100% -0.01 100% -1.15 100% -1.02
15Q2 0% 0.05 100% -1.12 100% -0.99
15Q3 0% 0.04 100% -1.10 100% -0.96

Table 6: Estimated average ELB regime probabilities and shadow rates in endogenous switching

models.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
-2
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Shadow Rate
Interest Rate

Figure 11: Nominal interest rate and the estimated shadow rate over the sample period for the AR(1)

model.
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4.6 Counterfactual Simulations

In this section we investigate the impact of learning dynamics on the ELB duration through a set

of counterfactual experiments. We consider the following setup with the estimated endogenous

switching models: using the MCMC draws for the learning models, we �rst run the �lter up

to period 2008Q4. From 2008Q4 onwards, we simulate the economy for a period of 8 years (32

quarters). For each model, we use a total of 1000 MCMC draws, where the parameter draws

are taken from the last 20 % of the MCMC simulation with a thinning factor of 0.02. We repeat

this exercise for each learning model under the estimated gain value, as well as di�erent gain

values to isolate and assess the e�ects of learning on the ELB duration.

Figure 12 shows the average ELB exit probabilities for �ve experiments with gain values

between 0 and 0.0075, along with the benchmark experiment with the estimated gain value.

This exercise reveals a clear pattern where smaller gain values are associated with higher average

exit probabilities. In all three models, the case with no updating (gain = 0) yields the largest

exit probability, while the case with the most updating (gain = 0.0075) yields the lowest exit

probability. The magnitude of changes in these probabilities di�ers across the models: the exit

probabilities oscillate in the range 50%-70% in the AR(1) model, 25%-95% in the LIL model

and 57%-99% in the MSV model. Nevertheless, they all point in the same direction where a

faster learning process leads to a worse outcome and a prolonged ELB episode.39

In light of the above results, there are several key takeaways from this section. First and

foremost, our results indicate that the presence of stronger learning dynamics unambiguously

increase the frequency of long-lived ELB regimes. This o�ers two potential interpretations for

the 2008-2015 period through the lens of our learning models. The �rst one is that expectations

may have been well anchored during this period and the e�ects of learning were limited. Second,

while learning dynamics created a downward pressure on the economy, there were other channels

at play that may have o�set the adverse e�ects of learning. In particular, unconventional

monetary policy tools such as forward guidance and quantitative easing might have had such

an impact. Importantly, a potential anchoring of expectations and the e�ects of unconventional

policy are not mutually exclusive events. We learningeave an exploration of policy interactions

with expectations under learning to future research.

5 Conclusions

In this paper we explored a general regime switching setup subject to adaptive learning, where

the agents' do not know the full details of a complex economy, and use past data to update

39Appendix E provides some additional �gures on the distribution of ELB regime durations, and time paths
of in�ation and output gap over the counterfactual period for all learning models.
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their models and form their expectations about the future. We provided an estimation method

to handle this class of models, and applied it to the Smets-Wouters (2007) model over the ELB

period during 2008-2015. Our results show that adaptive learning models generally improve

the model �t relative to the REE benchmarks. We �nd that impulse responses under REE

and adaptive learning models typically move in the same direction once the economy switches

to the ELB regime. However, the magnitudes of the changes tend to be smaller and more

gradual under adaptive learning, which suggests that standard REE models might overestimate

the impact of the ELB on the propagation of shocks. Our counterfactual experiments reveal

that stronger learning e�ects over the ELB episode tend to put a downward pressure on the

economy and prolong the duration of the ELB regime. This suggests that other e�ects, such as

unconventional policy tools and in particular forward guidance, might have had an o�setting

e�ect on learning dynamics over this period. We leave an explicit analysis of the relation

between adaptive learning and unconventional monetary policy to future research.
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Appendix

A Long-run Taylor Principle

This section sketches the derivation of the Long-run Taylor Principle (LRTP) in Section 2.1.

The readers are referred to Appendix A in Davig & Leeper (2007) for the full set of assumptions

and the proof. LRTP refers to the determinacy of the Rational Expectations Equilibrium, which

is de�ned as the existence of a unique bounded solution for the in�ation process πt. Recall that

the process is given by:[
α1 0

0 α2

][
π1,t

π2,t

]
=

[
p11 p12

p21 p22

][
Etπ1,t+1

Etπ2,t+1

]
+

[
rt

rt

]
. (A.1)

De�ne the matrix M =

[
α1 0

0 α2

]−1 [
p11 p12

p21 p22

]
. A necessary and su�cient condition for the

determinacy of REE is that both eigenvalues of M lie inside the unit circle. The eigenvalues of

M are given by:

λ1,2 =
1

2α1α2

(α2p11 + α1p22 ±
√

(α2p11 − α1p22)2 + 4α1α2p12p21). (A.2)

Davig & Leeper (2007) show that, the condition:

(1− α2)p11 + (1− α1)p22 + α1α2 > 1, (A.3)

which is de�ned as the Long-run Taylor principle, is both necessary and su�cient for λ1,2 to lie

inside the unit circle.

B RPE and T-map

In this section we derive the T-map and the associated Restricted Perceptions Equilibria asso-

ciated with the �xed point of the T-map for several cases.
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B.1 Special case with 2 regimes, no lagged variables

We �rst examine a special case with 2 regimes and no lagged state variables as presented in 2,

where we can obtain an analytical expression for the RPE. Note that in the special case with

ιp = 0, the solution to the model from Section 2.1 can be written as a generic 1-dimensional

Markov-switching model of the form:πt = d(st)rt,

rt = ρrt−1 + vt,

where d(st) = dρ−1
α(st)

. The moments necessary for the T-map are given as follows:

E[πtrt] = P1E[πtrt|St = 1] + P2E[πtrt|St = 2],

E[πtrt|St = 1] = E[d(st)r
2
t |St = 1, St−1 = 1]p11 + E[d(st)r

2
t |St = 1, St−1 = 2](1− p22)

P2

P1

= d1p11 + d1(1− p22)
P2

P1

.

Similarly, we have:

E[πtrt|St = 1] = d2p22 + d2(1− p11)
P1

P2

,

which yields:

E[πtrt] = P1(d1p11 + d1(1− p22)
P2

P1

) + P2(d2p22 + d2(1− p11)
P1

P2

).

Plugging in the steady-state probabilities P1 and P2, the T-map is given as follows:

d→ T (d) =
α1(1− p22) + α2(1− p11)

α1α2(2− p11 − p22)
(dρ+ 1),

with the E-stability condition:

DTa =
α1(1− p22) + α2(1− p11)

α1α2(2− p11 − p22)
ρ < 1.

Re-arranging the expression above yields the Long-run E-stability (LRES) condition presented

in Section 2. Further note that the regime-speci�c T-maps, and the associated regime-speci�c

E-stability conditions are given by:

d→ dρ+ 1

αi
,

DTd =
ρ

αi
< 1,
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which implies that E-stability of all regime-speci�c equilibria is a su�cient, but not necessary

condition for LRES.

B.2 1-dimensional case with m regimes

We next generalize the T-map and RPE to the generic case with lagged state variables and m

regimes. While the T-map becomes analytically intractable in this case, we can still numerically

compute it in the 1-dimensional case. Note that the Fisherian model considered in Section 2.2

can be written as a generic 1-dimensional Markov-switching model of the form:πt = d(st)rt + b(st)πt−1,

rt = ρrt−1 + vt,

where b(st) = ιp
α(st)−(1−ιp)b

and d(st) = (1−ιp)dρ+1

α(st)−(1−ιp)b
. In this Section we consider the general case

with m regimes, with transition matrix given by:

Q =


p11 . . . p1m

... . . .
...

pm1 . . . pmm

 .
The 2-regime setup of Section 2.2 is a special case with m = 2. We omit the �rst moment E[πt],

which is trivially given as zero. Using this, we compute the second moments starting with the

conditional variance. We have:

E[π2
t ] =

m∑
i=1

PiE[π2
t |St = i],

E[π2
t |St = i]

m∑
i=1

E[π2
t |St = i, St−1 = j]pji

Pj
Pi
,

where Pi denotes the i
th element of the steady-state vector of the Markov chain. Plugging in

the expression for πt yields:

=
m∑
j=1

E[d(st)
2r2
t + b(st)

2π2
t−1 + 2b(st)d(st)rtπt−1|St = i, St−1 = j]pji

Pj
Pi

=
m∑
j=1

E[d2
iσ

2
r + b2

iπ
2
t−1 + σ2

r + 2b1dirtπt−1|St−1 = j]pji
Pj
Pi
.
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Note that this last expression implies m equations in m unknowns for the conditional variances,

given the conditional covariances E[πtrt|St = j]. Using this, the unconditional variance is given

by:

E[π2
t ] =

m∑
i=1

Pi

m∑
j=1

(d2
iσ

2
r + b2

iE[π2
t−1|St = j] + σ2

r + 2b1dirtE[πt−1|St−1 = j])pji
Pj
Pi
.

Next we move onto the covariance term E[πtrt]:

E[πtrt] =
m∑
i=1

PiE[πtrt|St = i],

E[πtrt|St = i] =
m∑
j=1

E[πtrt|St = i, St−1 = j]pji
Pj
Pi

=
m∑
j=1

E[b(st)πt−1rt + d(st)r
2
t |St = i, St−1 = j]pji

Pj
Pi

m∑
i=1

(biρE[πtrt|St = j] + diσ
2
r)pji

Pj
Pi
.

Note that again, the last expression implies m equations in m unknowns for the conditional

covariances. With this, the unconditional covariance is given by:

E[πtrt] =
∑
i=1

mPi

m∑
j=1

(biρE[πtrt|St = j] + diσ
2
r)pji

Pj
Pi
.

Next we compute the �rst-order autocovariance:

E[πtπt−1] =
m∑
i=1

PiE[πtπt−1|St = i],

E[πtπt−1|St = i] =
m∑
j=1

E[b(st)π
2
t−1 + d(st)πt−1rt|St = 1, St−1 = j]pji

Pj
Pi

=
m∑
j=1

(biE[π2
t |St = j] + diρE[πtrt|St = j])pji

Pj
Pi
.

Given the conditional covariance and conditional variance terms, the above expression yields

the conditional autocovariances. Hence the unconditional autocovariance is given as:

E[πtπt−1] =
m∑
i=1

Pi

m∑
j=1

(biE[π2
t |St = j] + diρE[πtrt|St = j])pji

Pj
Pi
.
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Finally note that:

E[d(st)πt−1rt] =
m∑
i=1

Pi

m∑
j=1

diρE[πtrt|St = j]pji
Pj
Pi
,

and:

E[b(st)πt−1rt] =
m∑
i=1

Pi

m∑
j=1

biρE[πtrt|St = j]pji
Pj
Pi
.

Recalling the T-map

(
d

b

)
→ T (d, b) =

(
E[(πt − bπt−1)rt]

E[(πt−drt)πt−1]

E[π2
t ]

)
, the above conditions fully pin

down T (d, b). It is generally not possible to obtain analytical expressions for this mapping,

which also applies to the RPE values dRPE and bRPE. Therefore our results in Section 2.2 are

computed numerically for given values of parameters.

B.3 N dimensional case with m regimes

In this section we derive the T-map for the general N dimensional case with m regimes. After

plugging in the PLM into ALM, the model can be re-written as a generic Markov-switching

model of the form: Xt = a(st) + b(st)Xt−1 + d(st)εt,

εt = ρεt−1 + ηt,

where a(st) = (I − C(st)b)
−1(A(st) + C(st)a), b(st) = (I − C(st)b)

−1B(st) and d(st) = (I −
C(st)b)

−1(C(st)(dρ) + D(st)). We need the �rst and second moments of this system in order

to compute the the resulting T-map for the RPE. Starting with the �rst moment, we have:

E[Xt] =
m∑
i=1

PiE[Xt|St = i],

E[Xt|St = i] =
m∑
j=1

[ai + biXt−1 + diεt|St−1 = j]pji
Pj
Pi

=
m∑
j=1

(ai + biE[Xt|St = j])pji
Pj
Pi
.

The expression above implies m equations in m unknowns for the conditions means. Using this

yields:

E[Xt] =
m∑
i=1

Pi

m∑
j=1

(ai + biE[Xt|St = j])pji
Pj
Pi
.
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Moving onto the second moments and starting with the covariance term, we have:

E[Xtε
′
t] =

m∑
i=1

PiE[Xtε
′
t|St = i],

E[Xtε
′
t|St = i]E[)a(st) + b(st)Xt−1 + d(st)εt)ε

′
t|St = i]

=
m∑
j=1

E[(ai + biXt−1 + diεt)ε
′
t|St−1 = j]pji

Pj
Pi

=
m∑
j=1

(biρE[Xtε
′
t|St = j] + diΣε)pji

Pj
Pi
.

The last expression again implies m equations in m unknowns for the conditional covariances.

The unconditional covariance is then given by:

E[Xtε
′
t] =

m∑
i=1

Pi

m∑
j=1

(biρE[Xtε
′
t|St = j] + diΣε)pji

Pj
Pi
.

Next we compute:

E[XtX
′
t] =

m∑
i=1

PiE[XtX
′
t|St = i],

E[XtX
′
t|St = i] = E[a(st)a(st)

′ + 2a(st)X
′
t−1b(st)

′ + 2a(st)εtd(st)
′+

b(st)Xt−1X
′
t−1b(st)

′ + 2b(st)Xt−1εtd(st)
′ + d(st)εtε

′
td(st)

′|St = i]

=
m∑
j=1

E[aia
′
i2aiX

′
t−1b

′
i + 2aiε

′
td
′
i + biXt−1X

′
t−1b

′
i + 2biXt−1ε

′
td
′
i + diεtε

′
td
′
i|St = j]pji

Pj
Pi
.

Given the conditional means and covariances, the last expressions implies m equations in m

unknowns for the conditional moments E[XtX
′
t|St = i]. The unconditional moment is then

given by:

E[XtX
′
t] =

m∑
i=1

Pi

m∑
j=1

(aia
′
i+2aiE[X ′t|St = j]b′i+biE[XtX

′
t|St = j]b′i+2biE[Xtε

′
t|St = j]ρ′d′i+diΣεd

′
i)pji

Pj
Pi
.

Finally we compute the autocovariance term:

E[XtX
′
t−1] =

m∑
i=1

PiE[XtX
′
t−1|St = i],

E[XtX
′
t−1|St = i] = E[aiX

′
t−1 + biXt−1X

′
t−1 + diρεt−1X

′
t−1|St = i] =
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m∑
j=1

(aiE[Xt|St = j] + biE[XtX
′
t|St = j] + diρE[εtX

′
t|St = j])pji

Pj
Pi
.

The last expression is pinned by the conditional �rst and second moments computed above.

The unconditional autocovariance is then given as:

E[XtX
′
t] =

m∑
i=1

m∑
j=1

(aiE[Xt|St = j] + biE[XtX
′
t|St = j] + diρE[εtX

′
t|St = j])pji

Pj
Pi
.

Recall that the T-map is given by:ab
c

→
 E[Xt − bXt−1 − dεt]
E[(Xt − a− dεt)X ′t−1)E[XtX

′
t]
−1]

E[(Xt − a− bXt−1)ε′t]E[εtε
′
t]
−1

 .

Hence, given the �rst and second moments computed above, the T-maps for a, b and c are

pinned down. Similar to 1-dimensional case, it is generally not possible to �nd analytical ex-

pressions for these matrices. Further note that, the T-map for b → T (a, b, c) involves a 2th

order matrix polynomial of dimension N. This means there can be up to
(

2N
N

)
for b. To our

knowledge, there is no straightforward and general method to compute the full set of solutions

to this problem. In this paper, we do not compute these �xed-points and rely on Monte Carlo

simulations when necessary.

Further note that the regime-speci�c T-maps are given by:

ab
c

→
 Ai + Ci(a+ ba)

Bi + Cib
2

Ci(bd+ dρ) +Di

 .

These simply correspond to the standard MSV solutions given the regime-speci�c matrices.

Computing the �xed-points yield the regime-speci�c equilibria as follows:aRi = (I − Ci − CibRi)−1Ai,

vec(DRi) = (I − (I ⊗ (Cib
Ri)))vec(d) + (ρ⊗ Ci)vec(d) + vec(Di),

which yields the regime-speci�c values for aRi and dRi respectively, for a given matrix bRi . The

second-order polynomial for bRi can be solved using standard toolboxes such as Adjemian et al.

(2011) and Uhlig et al. (1995), which then completely pins down the regime-speci�c MSV. De-

noting θ = (a, b, d)′, the associated Jacobian for E-stability condition is given by:
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DT

Dθ
=

Ci + Cib vec−1
n,n(a′ ⊗ Ci) 0

0 2Cib 0

0 vec−1
n,n(d′ ⊗ Ci) Cib+ vec−1

n,n(ρ′ ⊗ Ci)

 ,
where vec−1

n,n denotes the matricization of a vector to an (n, n) matrix.

B.4 Long-run E-stability for the New Keynesian Model

This section derives the long-run E-stability conditions for an extended version of the New

Keynesian model from Section 2. The main purpose is to investigate how the presence of

exogenous shocks a�ects the stability conditions presented in Section 2. Consider the following

version of the New Keynesian model with two exogenous AR(1) shocks:

xt = Etxt+1 − 1
τ
(rt − Etπt+1) + εx,t,

πt = βEtπt+1 + κxt + επ,t,

rt = max{0, φxxt + φππt + ηr,t},

εx,t = ρxεx,t−1 + ηx,t,

επ,t = ρπεπ,t−1 + ηπ,t,

We �rst derive the regime-speci�c T-maps and the associated Jacobian matrix. Using the same

notation from Section B.3, we have:(
a

d

)
→ T (a, d) =

(
Ai + Cia

Cidρ+Di

)
,
∂T (a, d)

∂[a, d]
=

(
Ci 0

0 (ρCi)
′

)
,

where the underlying Rational Expectations Equilibrium is given by a = (I − Ci)−1Ai (which

reduces to a vector of zeros in this example) and vec(d) = (I − ρ′ ⊗ Ci)−1vec(Di). Notice �rst

that, given the Jacobian matrix as above, the �rst part on the diagonal governs the stability of

mean dynamics a, while the second part governs the stability of shock coe�cients d. As such,

the underlying E-stability conditions for the means and shocks are independent. Second, with

shock autocorrelation values of 0 < ρx < 1 and 0 < ρπ < 1, the eigenvalues associated with the

stability of d are always smaller than the eigenvalues of a. Therefore, the E-stability condition

on the mean dynamics acts as a su�cient condition for E-stability on the shock dynamics.

For the parameterization that we considered in Section 2, autocorrelation parameters with

values ρx < 0.87 and ρπ < 0.87 guarantee that the shock dynamics around d are E-stable in

both normal and ELB regimes. Therefore the stability conditions considered in Section 2 fully
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extend to this case with exogenous shocks, without loss of generality.

For completeness, we also provide the RPE and the associated long-run E-stability for the

model. For the T-map, we obtain:(
a

d

)
→ T (a, d) =

(
P1(A1 + C1a) + P2(A2 + C2a)

P1(C2dρ+D2) + P2(C2dρ+D2)

)
,
∂T (a, d)

∂[a, d]
=

(
P1C1 + P2C2 0

0 P1(ρC1)′ + P2(ρC2)′

)
,

where the RPE is given by:a = (I − P1C1 − P2C2)−1(P1A1 + P2A2),

d = (I − ρ′ ⊗ (P1C1)− ρ′ ⊗ (P2C2))−1(vec(P1D1) + vec(P2D2)).

Hence, in the absence of lagged variables, the equilibrium and the associated stability conditions

still come out simply as weighted averages of the underlying regime-speci�c equilibria.

C Kim-Nelson Filter

This section provides a more detailed description of the KN-�lter used in our estimations. The

�lter nests the standard Kalman �lter for unobserved state variables with the Hamilton �lter

for unobserved regime probabilities. These two �lters are followed by an approximation step

via collapsing, which reduces the number of states from m2 to m in order to keep the algorithm

tractable. We extend the �lter with an adaptive learning step, which takes a weighted average of

the (Kalman) �ltered states based on the (Hamilton) �ltered regime probabilities. We assume

that the resulting states are observable to the model's agents, who update their beliefs with a

constant gain least squares algorithm using the latest available data. This leaves the Kalman

and Hamilton �lter blocks intact, since the model is conditionally linear at every period, given

the previous period's adaptive learning update.

The endogenous regime-switching model follows from a simple extension of the above �lter,

where the transition probability matrix Q(i, j) with a time-varying matrix Qt(i, j). This matrix

is updated every period after the Kalman �lter block given the shadow rate, which in turn is

calculated based on the in�ation and output gap variables contained in matrices S
(i,j)
t|t .
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Table 7: KN-�lter for Markov-Switching DSGE Models under Adaptive Learning

{
St = γ

(st)
2,Φt

+ γ
(st)
1,Φt

St−1 + γ
(st)
3,Φt

εt, , εt ∼ N(0,Σ)

yt = E + FSt

0) Initial States :

S̃i0|0, P̃
i
0|0, Pr[S0 = i|Φ0],Φ0 given.

1) Kalman Filter Block with the standard measurement and transition equations:

For t = 1 : N
For {St−1 = i, St = j} 

S
(i,j)
t|t−1

= γ
(j)
1 S

(i)
t−1|t−1

+ γ
(j)
2

P
(i,j)
t|t−1

= γ
(j)
1 P

(i)
t−1|t−1

γ
(j)
1 + γ

(j)
3 Σ(j)(γ

(j)
3 )′

v
(i,j)
t|t−1

= (yt − F (j)S
(i,j)
t|t−1

)

Fe(i,j) = F (j)P
(i,j)
t|t−1

F (j)

S
(i,j)
t|t = S

(i,j)
t|t−1

+ P
(i,j)
t|t−1

(F (j))′(Fe(i,j))
−1
v(i,j)

P
(i,j)
t|t = P

(i,j)
t|t−1

(F (j))′(Fe(i,j))−1F (j)P
(i,j)
t|t−1

2) Hamilton Block for transition probabilities:

Denote: Pr[St−1 = i, St = j|Φt−1] = pp
i,j
t|t−1

,f(yt|Φt−1) the marginal likelihood,

Pr[St−1 = i, St = j|Φt] = pp
i,j
t|t and Pr[St = j|Φt] =

˜
pp
j
t|t.

pp
(i,j)
t|t−1

= Q(i, j)pp
(i)
t−1|t−1

f(yt|Φt−1) =
∑M
j=1

∑M
i=1 f(yt|St−1 = i, St = j,Φt−1)pp

(i,j)
t|t−1

pp
(i,j)
t|t =

f(yt|St−1=i,St=j,Φt−1)pp
(i,j)
t|t−1

f(yt|Φt−1)

p
j
t|t =

∑M
i pp

(i,j)
t|t−1

3) Collapsing to reduce the number of states from m2 to m:
S

(i)
t|t =

∑M
i=1 pp

(i,j)
t|t S

(i,j)
t|t

p
(j)
t|t

P
(i)
t|t =

∑M
i=1 pp

(i,j)
tt (P

(i,j)
t|t +(S

(j)
t|t−S

(i,j)
t|t )(S

(j)
t|t−S

(i,j)
t|t )′)

p
(j)
t|t

4) Update expectations based on �ltered states:

Updating Expectations based on Filtered States:


S̃t|t =

∑M
j=1 p

(j)
t|tS

(j)
t|t

Φt = Φt−1 + γR−1
t S̃t−1|t−1(S̃t|t − ΦTt−1S̃t−1|t−1)T

R−1
t = Rt−1 + γ(S̃t−1|t−1S̃

T
t−1|t−1 − Rt−1)

D Smets-Wouters Model Description

The model consists of 13 equations linearized around the steady-state growth path, supple-

mented with seven exogenous structural shocks. We have two minor deviations from the bench-

mark model. First, we assume that the mark-up shocks follow AR(1) processes, as opposed

to ARMA(1,1) processes assumed in the original model. Second, we de�ne output gap as the

deviation of output from the underlying productivity process following Slobodyan & Wouters

(2012a), as opposed to the original model that de�nes output gap based on the �exible economy.

This second deviation allows us to restrict the state-space of the model by omitting the �exible
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part of the economy, thereby reducing the computational costs. The rest of the model follows

the same structure as the original model. The readers are referred to Smets & Wouters (2007)

for further details about the microfoundations. In this section, we brie�y outline the linearized

model used in our estimations.

The aggregate resource constraint is given by:yt = cyct + iyit + zyzt + εgt ,

εgt = ρgε
g
t−1 + ηgt ,

(D.1)

where yt, ct, it and zt are the output, consumption, investment and capital utilization rate re-

spectively, while cy, iy and zy are the steady-state shares in output of the respective variables.

The second equation de�nes the exogenous spending shock εgt where η
g
t is an i.i.d-normal dis-

turbance for spending. The consumption Euler equation is given by:ct = c1ct−1 + (1− c1)Etct+1 + c2(lt − Etlt+1)− c3(rt − Etπt+1) + εbt ,

εbt = ρbε
b
t−1 + ηbt ,

(D.2)

with c1 = λ
γ
/(1+ λ

γ
),c2 = (σc−1)(wsslss/css)/(σc(1+ λ

γ
),c3 = (1− λ

γ
)/((1+ λ

γ
)σc), where λ, γ and

σc denote the habit formation in consumption, steady state-growth rate and the elasticity of

intertemporal substitution respectively. εbt corresponds to the risk premium shock modeled as

an AR(1) process, where ηbt is an i.i.d-normal disturbance. Next, the investment Euler equation

is de�ned as: it = i1it−1 + (1− i1)Etit+1 + i2qt + εit,

εit = ρiε
i
t−1 + ηit,

(D.3)

with i1 = 1
1+β̄γ

, i2 = 1
(1+β̄γ)(γ2φ)

, where β̄ = βγ−σc , φ is the steady-state elasticity of capital

adjustment cost and β is the HH discount factor. qt denotes the real value of existing capital

stock. εit represents the AR(1) investment shock , where ηit is an i.i.d-normal disturbance. The

value of capital-arbitrage equation is given by:

qt = q1Etqt+1 + (1− q1)Etrkt+1 − (rt + Etπt+1) + 1
c3
εbt , (D.4)

with q1 = β̄(1− δ). The production function is given as:yt = φp(αk
s
t + (1− α)lt + εat ),

εat = ρaε
a
t−1 + ηat ,

(D.5)

where kst denotes the capital services used in production, α is the share of capital in production
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and φp is ( one plus) the share of �xed costs in production. εat denotes the AR(1) total factor

productivity shock. Capital is assumed to be the sum of the previous amount of capital services

used and the degree of capital utilization, hence:

kst = kt−1 + zt. (D.6)

The degree of capital utilization is a positive function of the degree of rental rate, zt = z1r
k
t ,

with z1 = 1−ψ
ψ
, ψ the elasticity of the capital utilization adjustment cost. Next the equation

for installed capital is given by:

kt = k1kt−1 + (1− k1)it + k2ε
i
t, (D.7)

with k1 = 1−δ
γ
, k2 = (1− 1−δ

γ
)(1 + β̄γ)γ2φ. The price mark-up equation is given by:

µpt = α(kst − lt) + εat − wt. (D.8)

The NKPC is characterized as: πt = π1Etπt+1 − π2µ
p
t + εpt ,

εpt = ρpε
p
t−1 + ηpt ,

(D.9)

with π1 = β̄γ ,π2 = (1− βγξp)(1− ξp)/[ξp((φp − 1)εp + 1)], where ξp corresponds to the degree

of price stickiness, while εp denotes the Kimball goods market aggregator. The rental rate of

capital is given by:

rkt = −(kt − lt) + wt, (D.10)

The wage mark-up is given as the real wages net of marginal rate of substitution between

working and consuming, hence:

µwt = wt − (σllt +
1

1− λ/γ
(ct −

λ

γ
ct−1), (D.11)

where σl denotes the elasticity of labor supply. The real wage equation is given by:wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2µ
w
t + εwt ,

εwt = ρwε
w
t−1 + ηwt ,

(D.12)

with w1 = 1/(1 + β̄γ), and w2 = ((1− β̄γξw)(1− ξw)/(ξw(φw − 1)εw + 1)). Hence the real wage

is a weighted average of the past and expected wage, expected in�ation, the wage mark-up and

the wage mark-up shock εwt , where ηwt is an i.i.d-normal disturbance. Finally, monetary policy
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is assumed to follow a standard Taylor rule subject to the ELB constraint:40rt = max{−r̄, ρrt−1 + (1− ρ)(rππt + ryxy) + rdy(∆xt) + εrt},

εrt = ρrε
r
t−1 + ηrt ,

(D.13)

where r̄ denotes the steady-state interest rate, xt denotes the output gap, and ε
r
t is the AR(1)

monetary policy shock. As explained in Section 4, this is approximated as a 2-regime Markov-

process, where:

rt = ρ(st)rt−1 + (1− ρ(st))(rπ(st)πt + ry(st)xy) + rdy(st)(∆xt) + εrt (st), (D.14)

with the normal regime given as ρ(st = 1) > 0, rπ(st = 1) > 1, ry(st = 1) > 0, rdy(st = 1) > 0

and εrt (st = 1) an AR(1) process with persistence ρr, where the i.i.d. disturbances have a

standard deviation of ηrN . The ELB regime is given as a pegged interest rate rule with ρ(st =

2) = 0, rπ(st = 2) = 0, ry(st = 2) = 0, rdy(st = 2) = 0 and εrt (st = 2) a white noise process

with standard deviation ηrELB . In this paper, following the approach in Slobodyan & Wouters

(2012a), we deviate from the original Smets-Wouters model and de�ne the output gap as the

deviation of output from the underlying productivity process, i.e. xt = yt − εat . This reduces

the number of forward-looking variables from 12 to 7, thereby reducing the computational costs

of estimating the model.

E Additional Figures from Counterfactual Simulations

This section provides some complementary results for the counterfactual experiments discussed

in Section 4.6. Figure 13 shows the resulting distributions of the ELB duration for all three

learning models under the benchmark scenario with the estimated gain values, along with the

average transition probabilities from ELB to the normal regime. This �gure already reveals a

large heterogeneity across the learning models: the AR(1) and LIL models generate a sizeable

fraction of simulations that are still at the ELB after the 32 quarter period, with 25 % and

58 % respectively. Unlike these two models, the MSV-learning model leads to short-lived ELB

episodes, with a majority of them lasting between 5 to 10 quarters. Looking at the average

transition probabilities yields a similar pattern, with an exit probability of nearly 100 % for the

MSV-learning model, 60 % for AR(1) and 40 % for LIL. The model with the largest estimated

gain, i.e. LIL, yields the smallest exit probability, while the model with the smallest estimated

gain, i.e. MSV-learning, yields the largest exit probability.

40Note that is Sections 2 through 4, we denote the nominal interest rate by it. In this Appendix, with some
abuse of notation, we use it to denote investment, whereas the nominal interest rate is denoted by rt.
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Figure 14 shows the average in�ation and output growth from simulations over the coun-

terfactual period for all models, which are in line with the ELB durations: the LIL model

predicts a very large downside risk to both in�ation and output growth, where a large number

of simulations lead to de�ationary spirals and falling output growth. For the AR(1) model,

output growth evolves similar to the data. Simulated in�ation values are typically lower than

the data and the simulations indicate a downside risk, similar to the LIL model but smaller in

magnitude. For the MSV model, both in�ation and output growth are on par with the realized

data and there is no downside risk in either process, unlike the AR(1) and LIL models. For the

MSV model, the short ELB durations may seem at odds with the estimation results at a �rst

glance. Given the small gain value, the simulations typically recover quickly before the learning

dynamics build up a downward pressure. This is di�erent than the estimation exercise, where

the model is guaranteed to stay in the ELB regime long enough for the learning dynamics to

kick in and reach sizeable e�ects. These results are consistent with the ELB frequency distri-

butions discussed above, and they show that the prolonged ELB regimes in the AR(1) and LIL

models are accompanied by below average output growth and in�ation in the simulations.
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(c) MSV

Figure 13: Left panel shows the distributions of the ELB duration for learning models. Right panel

shows the average transition probabilities from ELB to the normal regime together with the estimated

transition probabilities.
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(c) MSV in�ation and output growth

Figure 14: Monte Carlo distributions of in�ation (left) and output growth (right) for the learning

models over the counterfactual period. The dotted line shows the actual values of in�ation and output

growth, while the solid line shows the counterfactual mean. We plot two layers of uncertainty around

the counterfactual mean: the inner layer shows the 90% interval from the MC experiment where the

parameters are �xed at their posterior mean (hence the uncertainty is due to randomized shocks).

The second layer shows the 90 % interval from the MC experiment where the parameters are drawn

from their MCMC distribution at every simulation (hence the uncertainty interval is a combination of

randomized shocks and parameter uncertainty).
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