
Behavioral Learning Equilibria in the

New Keynesian Model ∗

Cars Hommesa,b , Kostas Mavromatisc , Tolga Özdena , Mei Zhud,†
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Abstract

We introduce the concept of behavioral learning equilibrium (BLE) into a high

dimensional linear framework and apply it to the standard New Keynesian (NK)

model. For each endogenous variable, boundedly rational agents use a simple, but

optimal AR(1) forecasting rule with parameters consistent with the observed sample

mean and autocorrelation of past data. The main contributions of our paper are

fivefold: (1) we derive existence and stability conditions of BLE in a general linear

framework, (2) we provide a method for Bayesian likelihood estimation of BLE, (3)

we estimate the baseline NK model based on U.S. data and show that the relative

model fit is better under BLE than REE, (4) we show that multiple E-stable BLE

exist in plausible parameter regions characterized by a unique REE, (5) optimal

monetary policy under BLE is different from REE and typically more aggressive,

suggesting that an optimal policy under REE may perform poorly under BLE.

JEL classification: C11; E62; E03; D83; D84

Keywords: Bounded rationality; Behavioral learning equilibrium; Adaptive learn-

ing; behavioral New Keynesian macro-model; Monetary Policy.

∗Corresponding author: Cars Hommes.
† E-mail addresses: C.H.Hommes@uva.nl, K.Mavromatis@dnb.nl, T.Ozden@uva.nl

Zhu.Mei@mail.shufe.edu.cn
‡The views expressed in this paper do not represent the position of the Bank of Canada, De Neder-

landsche Bank or the Eurosystem.

1



Acknowledgements

Earlier versions of this paper have been presented at the Computation in Economics

and Finance (CEF) conference, June 20-22, 2015, Taipei, Taiwan; the Workshop Ex-

pectations in Dynamic Macroeconomic Models, August 13-15 2015, University of

Oregon, USA; the Workshop on Agent-Based and DSGE Macroeconomic Modeling:

Bridging the Gap, November 20, 2015, Surrey, UK; the CEF2017 conference, June

28-30, 2017, New York; Workshop on Adaptive Learning, May 7-8, 2018, Bilbao,

Spain; Behavioral Macroeconomics Workshop, June 15-16, 2018, Bamberg, Ger-

many; CEF2018 conference, June 19-21, 2018, Milano, Italy; the 14th Dynare Con-

ference, July 5-6, 2018, ECB, Frankurt, Germany; and the ESEM conference, Au-
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1 Introduction

Rational Expectations Equilibrium (REE) requires that economic agents’ subjective

probability distributions coincide with the objective distribution that is determined, in

part, by their subjective beliefs. There is a vast literature that studies the drawbacks of

REE. Some of these drawbacks include the fact that REE requires an unrealistic degree

of computational power and perfect information on the part of agents. As an alternative

to REE, the adaptive learning literature (see, e.g., Evans and Honkapohja (2001, 2013)

and Bullard (2006) for extensive surveys and references) replaces Rational Expectations

with beliefs that come from an econometric forecasting model with parameters updated

using observed time series. A large part of this literature involves studying under which

conditions learning will converge to the REE. Convergence of adaptive learning to an REE

occurs when the perceived law of motion (PLM) of agents is correctly specified. How-

ever, in general the PLM may be misspecified. As shown in White (1994), an economic

model or a probability model is only a more or less crude approximation to whatever

might be the true relationships among the observed data. Consequently it is necessary to

view economic and/or probability models as misspecified to some greater or lesser degree.

Whenever agents have misspecified PLMs, a reasonable learning process may settle down

on a misspecification equilibrium. In the literature, different types of misspecification

equilibria have been proposed, e.g. Restricted Perceptions Equilibrium (RPE) where the

forecasting model is underparameterized (Sargent, 1991; Evans and Honkapohja, 2001;

Adam, 2003; Branch and Evans, 2010) and Stochastic Consistent Expectations Equilib-

rium (SCEE) (Hommes and Sorger, 1998; Hommes et al., 2013), where agents learn the

optimal parameters of a simple, parsimonious AR(1) rule.1

A SCEE is a very natural misspecification equilibrium, where agents in the economy

do not know the actual law of motion or even recognize all relevant explanatory variables,

but rather prefer a parsimonious forecasting model. The economy is too complex to fully

understand and therefore, as a first-order approximation, agents forecast the state of the

economy by simple autoregressive models (e.g. Fuster et al., 2010). In the simplest model

applying this idea, agents run a univariate AR(1) regression to generate out-of-sample

forecasts of the state of the economy. Hommes and Zhu (2014) provide the first-order

SCEE with an intuitive behavioral interpretation and refer to them as Behavioral Learn-

ing Equilibria (BLE). Although it is possible for some agents to use more sophisticated

models, one may argue that these practices are neither straightforward nor widespread.

A simple, parsimonious BLE seems a more plausible outcome of the coordination process

of individual expectations in large complex socio-economic systems (Grandmont, 1998).

1Branch (2006) provides a stimulating survey discussing the connection between these types of mis-
specification equilibria.
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Hommes and Zhu (2014) formalize the concept of BLE in the simplest class of models

one can think of: a one-dimensional linear stochastic model driven by an exogenous linear

stochastic AR(1) process. Agents do not recognize, however, that the economy is driven

by an exogenous process, but simply forecast the state of the economy using a univariate

AR(1) rule by using past observations. The parameters of the AR(1) forecasting rule

are not free, but fixed (and learned over time) according to the observed sample average

and first-order sample autocorrelation. Within this setup, Hommes and Zhu (2014) fully

characterize the existence and multiplicity of BLE and provide stability conditions under

a simple adaptive learning scheme –Sample Autocorrelation Learning (SAC-learning).

Although this class of models is simple, it contains two important standard applications:

an asset pricing model driven by autocorrelated dividends and the New Keynesian Phillips

curve with inflation driven by autocorrelated output gap (or marginal costs). As shown

in Fuhrer (2009), however, the skeleton model of the New Keynesian Phillips curve with

AR(1) driving variable leaves implicit the determination of real output and the role of

monetary policy in influencing output and inflation.

In this paper we extend the BLE concept to a general n-dimensional linear stochastic

framework and provide a method to estimate these models under BLE. As an applica-

tion we study the standard 3-equation dynamic stochastic general equilibrium (DSGE)

model-the New Keynesian (NK) model-, its empirical fit and the role of monetary policy

under BLE. Agents’ perceived law of motion (PLM) is a simple univariate AR(1) process

for each variable to be forecasted. Two consistency requirements are imposed upon BLE

to pin down the parameters of the forecasting model: for each endogenous variable, ob-

served sample averages and first-order sample autocorrelations match the corresponding

parameters of the forecasting rule. Agents thus learn the optimal AR(1) forecasting rule

for each endogenous variable in the economy.

The main contributions of our paper are fourfold: (1) we derive existence and stability

conditions of BLE in a general linear framework, (2) we provide a simple and general

method for Bayesian likelihood estimation of BLE, (3) we estimate the baseline NK model

based on U.S. data and show that the relative model fit is better under BLE than REE,

(4) we show that multiple E-stable BLE exist in plausible parameter regions associated

by a unique REE, (5) optimal monetary policy under BLE is different from REE and

typically more aggressive, which suggests that an optimal policy under REE may perform

poorly under BLE. This result is in line with previous studies in the adaptive learning

literature, see e.g. Orphanides & Williams (2003). The main novelty in our framework is

to show this as a misspecification equilibrium outcome, whereas previous studies typically

focus on learning dynamics around a REE.

Many models of learning lead to excess volatility, where the volatility under learning is

typically higher than under REE. Our BLE model exhibits another novel feature, persis-
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tence amplification: the persistence of inflation and output gap under BLE is significantly

higher than under REE. In fact, even when autocorrelations of the exogenous shocks

to fundamentals are small, inflation and output gap along BLE are typically near unit

root processes. As a consequence, when we estimate the NK model under BLE2, we find

important differences in parameter estimates compared with the REE. Further, optimal

monetary policy under BLE is finite for a wide range of calibrations, and the transmission

channel of monetary policy is stronger under BLE than REE at the estimated parameters.

Related literature

The issue of persistence has been of great interest to macroeconomists and policy-

makers. A number of models with frictions have been proposed to replicate persistence,

such as habit formation in consumption, indexation to lagged inflation in price-setting,

rule-of-thumb behavior, or various adjustment costs (Phelps, 1968; Taylor, 1980; Fuhrer

and Moore, 1992, 1995; Christiano et al., 2005; Smets and Wouters, 2003, 2005; Boivin

and Giannoni, 2006; Giannoni and Woodford, 2003). These models essentially improve

the empirical fit by adding lags to the model equations. Estimating these rich models

with frictions under the assumption of RE, one typically finds that substantial degrees

of persistence are supported by the data. Therefore these additional sources of persis-

tence appear necessary to match the inertia of macroeconomic variables. Estimation of

these models typically also involve highly persistent structural shocks. Our BLE model

is applied to a New Keynesian framework without habit formation or indexation, but

nevertheless exhibits strong persistence. Learning causes persistence amplification: small

autocorrelations of exogenous shocks are strongly amplified as agents learn to coordinate

on a simple AR(1) forecasting rule with near unit root parameters consistent with ob-

served sample average and sample autocorrelations. The high persistence of inflation and

output thus arises from a self-fulfilling mistake (Grandmont, 1998).

Our BLE concept fits with the literature employing adaptive learning to analyze the

evolution of U.S. inflation and monetary policy. Adaptive learning can help in under-

standing some particular historical episodes, such as high inflation in the 1980s, which

are often harder to explain under RE. For example, Orphanides and Williams (2003) con-

sider a form of imperfect knowledge in which economic agents rely on adaptive learning

to form expectations. This form of learning represents a relatively modest deviation from

RE that nests it as a limiting case. They find that policies that would be efficient under

RE can perform poorly when knowledge is imperfect. Milani (2005, 2007) also assumes

2The empirical results presented in this paper also hold in more realistic setups. In particular, an
estimated hybrid version of the New Keynesian model with lagged inflation and output can be found in
our Online Appendix. We also estimate Smets-Wouters (2007) model under BLE in our follow-up paper
Hommes et. al. (2019).
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that agents form expectations through adaptive learning using correctly specified eco-

nomic models and updating the parameters through constant-gain learning (CGL) based

on historical data. He shows empirically that when learning replaces RE, the estimated

degrees of habit formation and indexation drop closer to zero, suggesting that persistence

arises in the model economy mainly from expectations and learning. Eusepi and Preston

(2011) study expectations-driven business cycles based on learning, and find that learn-

ing dynamics generate forecast errors similar to the Survey of Professional Forecasters.

Estrella and Fuhrer (2002) study the shortcomings of REE models with a focus on iner-

tia and shock propagation structure. Fuhrer (2009) provides a good survey on inflation

persistence. He examines a number of empirical measures of reduced form persistence

including the first-order autocorrelation and the autocorrelation function of the inflation

series. He also investigates the sources of persistence, including learning of agents in a

RE setting.

Numerous empirical studies show that overly parsimonious models with little parame-

ter uncertainty can provide better forecasts than models consistent with the actual data-

generating complex process (e.g. Nelson, 1972; Stock and Watson, 2007; Clark and West,

2007; Enders, 2010). In a similar vein (but without analytical results) Slobodyan and

Wouters (2012) study a New Keynesian DSGE model with agents using a constant gain

AR(2) forecasting rule. Chung and Xiao (2014) and Xiao and Xu (2014) study learning

and predictions with an AR(1) or VAR(1) model in a two dimensional New Keynesian

model with limited information and show, based on simulations, that the simple AR(1)

model is more likely to prevail in reality when they make predictions. Laboratory ex-

periments in the NK framework also show that simple forecasting rules such as AR(1)

describe individual forecasting behavior surprisingly well (Assenza et al., 2014; Pfajfar

and Zakelj, 2016).

Our behavioral learning equilibrium concept is closely related to the Exuberance Equi-

libria (EE) in Bullard et al. (2008), where agents’ perceived law of motion is misspecified.

However, because of difficulty of computation, in Bullard et al. (2008) there are only

numerical results on the exuberance equilibria, while here we analytically show the exis-

tence and stability of BLE in a general linear framework with an application to the NK

model, as well as empirically validate BLE based on U.S. data. Another related mis-

specification equilibrium is Limited Information Learning Equilibrium (LILE) defined in

Chung and Xiao (2014), which is defined by the least-squares projection of variables on

the past information of the actual law of motion equal to that in the perceived law of

motion. Different from the LILE, our general Behavioral Learning Equilibrium is defined

by the conditions that sample means and first-order autocorrelations of each variable of

the actual law of motion are consistent with those corresponding to the perceived law of

motion. We further study the effects of monetary policy under the more plausible BLE.
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The concept of natural expectations in Fuster et al. (2010) and Fuster et al. (2011, 2012)

is another related misspecification concept, where agents use simple, misspecified models,

e.g., linear autoregressive models. Natural expectations, however, do not pin down the

parameters of the forecasting model through consistency requirements as for a restricted

perceptions equilibrium nor do they allow the agents to learn an optimal misspecified

model through empirical observations. Cho and Kasa (2015) study model validation in

an environment where agents are aware of misspecification and try to detect it through

adaptive learning. Similarly, Cho and Kasa (2017) study learning in a framework where

agents form expectations using a Bayesian averaging based on multiple models. In our

BLE misspecification is self-fulfilling and it is the outcome of a learning process. Another

related work is Adam and Marcet (2011), who introduce a more sophisticated notion of

bounded rationality called internal rationality, and show that even for a small deviation

from REE beliefs, with a small prior around the correct REE belief, the outcome of the

learning model can be quite different.

The paper is organized as follows. Section 2 introduces the main concepts of BLE in

a general n-dimensional setup, the theoretical results on existence and stability of BLE in

a linear framework and the empirical estimation methodology. Section 3 applies BLE to

the 3-equation New Keynesian model and presents the existence, stability and estimation

results. Section 4 studies optimal monetary policy and how policy can mitigate persistence

and volatility amplification under BLE. Section 5 concludes.

2 BLE in a Multivariate Framework

Hommes and Zhu (2014) introduced BLE in the simplest setting, a one-dimensional

linear stochastic model driven by an exogenous linear stochastic AR(1) process. In this

paper we generalize BLE to n-dimensional (linear) stochastic models driven by exogenous

linear stochastic AR(1) processes of multiple shocks. To ease the exposition we initially

follow the presentation in Hommes and Zhu (2014), but generalize their 1-dimensional

model to an n-dimensional framework. In addition, most macroeconomic models include

lagged state variables through features such as interest rate smoothing, habit formation in

consumption or indexation in prices and wages. Therefore, we further extend the model

with lagged state variables.

Let the law of motion of an economic system be given by the stochastic difference

equation

xxxt = FFF (xxxet+1, xxxt−1, uuut, vvvt), (2.1)

where xxxt is an n×1 vector of endogenous variables denoted by [x1t, x2t, · · · , xnt]′ and xxxet+1
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is the expected value of xxx at date t + 1. This notation highlights that expectations may

not be rational. Here FFF is a continuous n-dimensional vector function, uuut is a vector of

exogenous stationary variables and vvvt is a vector of white noise disturbances.

Agents are boundedly rational and do not know the exact form of the actual law of

motion (2.1). They only use a simple, parsimonious forecasting model where agents’ per-

ceived law of motion (PLM) is a simple univariate AR(1) process for each variable to

be forecasted. As shown in Enders (2010, p.84-85), coefficient uncertainty increases as

the model becomes more complex, and hence it could be that an estimated AR(1) model

forecasts a real ARMA(2,1) process better than an estimated ARMA(2,1) model. Nu-

merous empirical studies also show that overly parsimonious models with little parameter

uncertainty can provide better forecasts than models consistent with the more complex

actual data-generating process (e.g. Nelson, 1972; Stock and Watson, 2007; Clark and

West, 2007). Thus agents’ perceived law of motion (PLM) is assumed to be the simplest

VAR model with minimum parameters, i.e. a restricted VAR(1) process

xxxt = ααα + βββ(xxxt−1 −ααα) + δδδt, (2.2)

where ααα is a vector denoted by [α1, α2, · · · , αn]′, βββ is a diagonal matrix3 denoted by
β1 0 · · · 0

0 β2 · · · 0

· · ·
0 0 · · · βn

 with βi ∈ (−1, 1) and {δδδt} is a white noise process; ααα is the un-

conditional mean of xxxt and βi is the first-order autocorrelation coefficient of variable xi.

Given the perceived law of motion (2.2), the 2-period ahead forecasting rule for xxxt+1 that

minimizes the mean-squared forecasting error is

xxxet+1 = α + β2(xt−1 − α)α + β2(xt−1 − α)α + β2(xt−1 − α). (2.3)

Combining the expectations (2.3) and the law of motion of the economy (2.1), we obtain

the implied actual law of motion (ALM)

xxxt = FFF (ααα + βββ2(xxxt−1 −ααα), xxxt−1, uuut, vvvt). (2.4)

In the case that the ALM (2.4) is stationary, let the variance-covariance matrix ΓΓΓ(0) :=

E[(xxxt−xxx)(xxxt−xxx)′] and the first order autocovariance matrix ΓΓΓ(1) := E[(xxxt−xxx)(xxxt+1−xxx)′],

3Chung and Xiao (2014) also argue using simulations that the simple AR(1) model is more likely
to prevail in reality because of limited information restrictions when they model predictions in a two
dimensional New Keynesian model. In addition, as far as prediction is concerned, based on our numerous
empirical analyses, the short-term forecasts based on an AR(1) model are better than more general VAR
models in most cases, because in more general VAR models too many parameters need to be estimated
and hence coefficient uncertainty increases.
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where xxx is the mean of xxxt. Let ΩΩΩ be the diagonal matrix in which the ith diagonal

element is the variance of the ith process, that is ΩΩΩ = diag[γ11(0), γ22(0), · · · , γnn(0)],

where γii(0) is the ith diagonal entry of ΓΓΓ(0). Let LLL be the diagonal matrix in which

the ith diagonal element is the first-order autocovariance of the ith process, that is LLL =

diag[γ11(1), γ22(1), · · · , γnn(1)], where γii(1) is the ith diagonal entry of ΓΓΓ(1). LetGGG denote

the diagonal matrix in which the ith diagonal element is the first-order autocorrelation

coefficient of the ith process xi,t. Hence

GGG = LLLΩΩΩ−1. (2.5)

Behavioral Learning Equilibrium (BLE)

Extending Hommes and Zhu (2014), the concept of BLE is generalized as follows.

Definition 2.1 A vector (µ,ααα,βββ), where µ is a probability measure, ααα is a vector and βββ

is a diagonal matrix with βi ∈ (−1, 1) (i = 1, 2, · · · , n), is called a Behavioral Learning

Equilibrium (BLE) if the following three conditions are satisfied:

S1 The probability measure µ is a nondegenerate invariant measure for the stochastic

difference equation (2.4);

S2 The stationary stochastic process defined by (2.4) with the invariant measure µ has

unconditional mean ααα, that is, the unconditional mean of xi is αi, (i = 1, 2, · · · , n);

S3 Each element xi for the stationary stochastic process of xxx defined by (2.4) with the

invariant measure µ has unconditional first-order autocorrelation coefficient βi, (i =

1, 2, · · · , n), that is, GGG = βββ.

In other words, a BLE is characterized by two natural observable consistency require-

ments: the unconditional means and the unconditional first-order autocorrelation coef-

ficients generated by the actual (unknown) stochastic process (2.4) coincide with the

corresponding statistics for the perceived linear VAR(1) process (2.2), as given by the pa-

rameters ααα and βββ. This means that in a BLE agents correctly perceive the two simplest

and most important statistics: the mean and first-order autocorrelation (i.e., persistence)

of each relevant variable of the economy, without fully understanding its structure and

recognizing all explanatory variables and cross-correlations. A BLE is parameter free,

as along a BLE the two parameters of each linear forecasting rule are pinned down by

simple and observable statistics. Hence, agents do not fully understand the linear struc-

ture of the stochastic economy, i.e. they do not observe the shocks and do not take the

cross-correlations of state variables into account, but rather use a parsimonious univariate

AR(1) forecasting rule for each state variable. A simple BLE may be a plausible outcome
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of the coordination process of expectations of a large population. Laboratory experiments

within the New Keynesian framework also provide empirical evidence of the use of sim-

ple univariate AR(1) forecasting rules to forecast inflation and output gap (Adam, 2007;

Pfajfar and Zakelj, 2016; Assenza et al., 2014).

Furthermore, we note that along a BLE the orthogonality condition

E[xi,t − αi − βi(xi,t−1 − αi)] = 0,

E{[xi,t − αi − βi(xi,t−1 − αi)]xi,t−1} = E{[xi,t − αi − βi(xi,t−1 − αi)](xi,t−1 − αi)} = 0

is satisfied. That is, the forecast αi + βi(xi,t−1 − αi) is the linear projection of xi,t on

the vector (1, xi,t−1)′. For each variable, agents cannot detect the correlation between

the forecasting error xi,t − αi − βi(xi,t−1 − αi) and the vector (1, xi,t−1)′ in the forecast

model. The linear projection produces the smallest mean squared error among the class

of linear forecasting rules (e.g., Hamilton (1994)). Therefore, for each variable agents

use the optimal forecast within their class of univariate AR(1) forecasting rules (Branch,

2006).

Sample autocorrelation learning

In the above definition of BLE, agents’ beliefs are described by the linear forecasting

rule (2.3) with fixed parameters ααα and βββ. However, the parameters ααα and βββ are usually

unknown to agents. In the adaptive learning literature, it is common to assume that agents

behave like econometricians using time series observations to estimate the parameters as

new observations become available. Following Hommes and Sorger (1998), we assume

that agents use sample autocorrelation learning (SAC-learning) to learn the parameters

αi and βi, i = 1, 2, · · · , n. That is, for any finite set of observations {xi,0, xi,1, · · · , xi,t},
the sample average is given by

αi,t =
1

t+ 1

t∑
k=0

xi,k, (2.6)

and the first-order sample autocorrelation coefficient is given by

βi,t =

∑t−1
k=0(xi,k − αi,t)(xi,k+1 − αi,t)∑t

k=0(xi,k − αi,t)2
. (2.7)

Hence αi,t and βi,t are updated over time as new information arrives. It is easy to check

that, independently of the choice of the initial values (xi,0, αi,0, βi,0), it always holds that

βi,1 = −1
2
, and that the first-order sample autocorrelation βi,t ∈ [−1, 1] for all t ≥ 1.

10



As shown in Hommes and Zhu (2014), define

Ri,t =
1

t+ 1

t∑
k=0

(xi,k − αi,t)2.

Then SAC-learning is equivalent to the following recursive dynamical system4:



αi,t = αi,t−1 +
1

t+ 1
(xi,t − αi,t−1),

βi,t = βi,t−1 +
1

t+ 1
R−1
i,t

[
(xi,t − αi,t−1)

(
xi,t−1 +

xi,0
t+ 1

− t2 + 3t+ 1

(t+ 1)2
αi,t−1 −

1

(t+ 1)2
xi,t
)

− t

t+ 1
βi,t−1(xi,t − αi,t−1)2

]
,

Ri,t = Ri,t−1 +
1

t+ 1

[ t

t+ 1
(xi,t − αi,t−1)2 −Ri,t−1

]
.

(2.8)

The actual law of motion under SAC-learning is therefore given by

xxxt = FFF (αααt−1 + βββ2
t−1(xxxt−1 −αααt−1), xxxt−1, uuut, vvvt), (2.9)

with αi,t, βi,t as in (2.8).

In Hommes and Zhu (2014), F is a one-dimensional linear function. In this paper FFF

may be an n-dimensional linear vector function and includes the lagged term xxxt−1.

2.1 Main results in a multivariate linear framework

Assume that a reduced form model is an n-dimensional linear stochastic process xxxt,

driven by an exogenous VAR(1) process uuut. More precisely, the actual law of motion of

the economy is given by

xxxt = FFF (xxxet+1, uuut, vvvt) = bbb0 + bbb1xxx
e
t+1 + bbb2xxxt−1 + bbb3uuut + bbb4vvvt, (2.10)

uuut = aaa+ ρρρuuut−1 + εεεt, (2.11)

where xxxt is an n×1 vector of endogenous variables, bbb0 and aaa are vectors of constants, bbb1, bbb2

and bbb4 are n× n matrices of coefficients, bbb3 is an n×m matrix, ρρρ is an m×m matrix, uuut

is an m× 1 vector of exogenous variables which is assumed to follow a stationary VAR(1)

4The system in (2.8) is a decreasing gain algorithm, where all observations receive equal weight and
therefore the weight on the latest observation decreases as the sample size grows. There is also a constant
gain correspondence of SAC-learning, where past observations are discounted at a geometric rate. This
can be obtained by replacing the weights 1

t+1 by some positive constant κ, see the online appendix to
Hommes & Zhu (2014) for further details.
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as in (2.11), and vvvt is an n × 1 vector of i.i.d. stochastic disturbance terms with mean

zero and finite absolute moments, with variance-covariance matrix ΣvvvΣvvvΣvvv. Hence all of the

eigenvalues of ρρρ are assumed to be inside the unit circle. In addition, εεεt is assumed to be

an m× 1 vector of i.i.d. stochastic disturbance terms with mean zero and finite absolute

moments, with variance-covariance matrix ΣεΣεΣε and is independent of vvvt.

Rational expectations equilibrium

Assume that agents are rational. The perceived law of motion (PLM) corresponding

to the minimum state variable REE of the model is:

xxx∗t = ccc0 + ccc1xxx
∗
t−1 + ccc2uuut + ccc3vvvt. (2.12)

Assuming that shocks uuut are observable when forecasting xxxt+1, the one-step ahead forecast

is:

Etxxx
∗
t+1 = ccc0 + ccc2aaa+ ccc1xxx

∗
t + ccc2ρρρuuut, (2.13)

and the corresponding actual law of motion is:

xxx∗t = bbb0 + bbb1(ccc0 + ccc2aaa+ ccc1xxx
∗
t + ccc2ρρρuuut) + bbb2xxxt−1 + bbb3uuut + bbb4vvvt. (2.14)

The rational expectations equilibrium (REE) is the fixed point of

ccc0 − bbb1ccc1ccc0 − bbb1ccc0 = bbb0 + bbb1ccc2aaa, (2.15)

ccc1 − bbb1ccc
2
1 = bbb2, (2.16)

ccc2 − bbb1ccc1ccc2 − bbb1ccc2ρρρ = bbb3, (2.17)

ccc3 − bbb1ccc1ccc3 = bbb4. (2.18)

A straightforward computation (see Appendix A) shows that the mean of the REE xxx∗

satisfies

xxx∗ = (III − bbb1 − bbb2)−1[bbb0 + bbb3(I − ρρρ)−1a(I − ρρρ)−1a(I − ρρρ)−1a], (2.19)

where III denotes a comfortable identity matrix throughout the paper. In the special case

with ρρρ = ρIII 5 and bbb2 = 000, the rational expectations equilibrium xxx∗t satisfies

xxx∗t = (III − bbb1)−1bbb0 + (III − bbb1)−1bbb1(III − ρbbb1)−1bbb3aaa+ (III − ρbbb1)−1bbb3uuut + bbb4vvvt. (2.20)

5Note that ρρρ is a matrix while ρ is a scalar number throughout the paper.
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Thus its unconditional mean is:

xxx∗ = E(xxx∗t ) = (1− ρ)−1(III − bbb1)−1[bbb0(1− ρ) + bbb3aaa]. (2.21)

Its variance-covariance matrix is:

ΣΣΣxxx∗ = E[(xxx∗t − xxx∗)(xxx∗t − xxx∗)
′
] = (1− ρ2)−1(III − ρbbb1)−1bbb3ΣεεεΣεεεΣεεε[(III − ρbbb1)−1bbb3]

′
+ bbb4ΣvΣvΣvbbb

′
4.(2.22)

Furthermore, the first-order autocovariance is

ΣΣΣxxx∗xxx∗−1
= E[(xxx∗t − xxx∗)(xxx∗t−1 − xxx∗)

′
] = ρ(1− ρ2)−1(III − ρbbb1)−1bbb3ΣεεεΣεεεΣεεε[(III − ρbbb1)−1bbb3]

′
. (2.23)

The first-order autocorrelation of the i-th-element x∗i of xxx∗ is the i-th diagonal element of

matrix ΣΣΣxxx∗xxx∗−1
divided by the corresponding i-th diagonal element of matrix ΣΣΣxxx∗ . Further-

more, if ΣvvvΣvvvΣvvv = 000, then the first-order autocorrelation of the i-th element ui of uuu is equal to

ρ. In this case the persistence of the i-th variable x∗i in the REE coincides exactly with

the persistence of the exogenous driving force ui,t. That is, in this case the persistence in

the REE only inherits the persistence of the exogenous driving force.

Existence of BLE

Now assume that agents are boundedly rational and do not believe or recognize that

the economy is driven by an exogenous VAR(1) process uuut, but use a simple univariate

linear rule to forecast the state xxxt of the economy. Given that agents’ perceived law of

motion is a restricted VAR(1) process as in (2.2), the actual law of motion becomes

xxxt = bbb0 + bbb1[ααα + βββ2(xxxt−1 −ααα)] + bbb2xxxt−1 + bbb3uuut + bbb4vvvt, (2.24)

with uuut given in (2.11). If all eigenvalues of bbb1βββ
2 + bbb2, for each βi ∈ [−1, 1], 1 ≤ i ≤ n, lie

inside the unit circle, then the system (2.24) of xxxt is stationary and hence its mean xxx and

first-order autocorrelation GGG exist.

The mean of xxxt in (2.24) is computed as

xxx = (III − bbb1βββ
2 − bbb2)−1[bbb0 + bbb1ααα− bbb1βββ

2ααα + bbb3(III − ρρρ)−1aaa]. (2.25)

Imposing the first consistency requirement of a BLE on the mean, i.e. xxx = ααα, and solving

for ααα yields

ααα∗ = (III − bbb1 − bbb2)−1[bbb0 + bbb3(III − ρρρ)−1aaa]. (2.26)

Comparing with (2.19), we conclude that in a BLE the unconditional mean ααα∗ coincides

with the REE mean. That is to say, in a BLE the state of the economy xxxt fluctuates on
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average around its RE fundamental value xxx∗.

Consider the second consistency requirement of a BLE on the first-order autocorrela-

tion coefficient matrix βββ of the PLM. The second consistency requirement yields

GGG(βββ) = βββ, (2.27)

whereGGG as in (2.5) and βββ are diagonal matrices. For convenience let Gi denote the i-th

diagonal element of the matrixGGG in (2.5). Under the assumption that all of the eigenvalues

of bbb1βββ
2 + bbb2 for each βi ∈ [−1, 1](i = 1, 2, · · · , n) lie inside the unit circle, from the theory

of stationary linear time series, Gi(β1, β2, · · · , βn) ∈ [−1, 1] and is a continuous function

with respect to (β1, β2, · · · , βn) and other model parameters, see Appendix B6. Based

on Brouwer’s fixed-point theorem for (G1, G2, · · · , Gn), there exists βββ∗ = (β∗1 , β
∗
2 , · · · , β∗n)

with each β∗i ∈ [−1, 1], such that GGG(β∗β∗β∗) = β∗β∗β∗. We conclude:

Proposition 1 If all eigenvalues of ρρρ and bbb1βββ
2 + bbb2, for each βi ∈ [−1, 1], are inside

the unit circle7, there exists at least one behavioral learning equilibrium (ααα∗,βββ∗) for the

economic system (2.24) with ααα∗ = (III − bbb1 − bbb2)−1[bbb0 + bbb3(III − ρρρ)−1aaa] = xxx∗.

Stability under SAC-learning

In this subsection we study the stability of BLE under SAC-learning. The ALM of

the economy under SAC-learning is given by{
xxxt = bbb0 + bbb1[αααt−1 + βββ2

t−1(xxxt−1 −αααt−1)] + bbb2xxxt−1 + bbb3uuut + bbb4vvvt,

uuut = aaa+ ρρρuuut−1 + εεεt.
(2.28)

with αααt, βββt updated based on realized sample average and sample autocorrelation as in

(2.8). Appendix C shows that the E-stability principle applies and that stability under

SAC-learning is determined by the associated ordinary differential equation (ODE)8


dααα

dτ
= xxx(ααα,βββ)−ααα = (III − bbb1βββ

2 − bbb2)−1[bbb0 + bbb1ααα− bbb1βββ
2ααα + bbb3(III − ρρρ)−1aaa]−ααα,

dβββ

dτ
= GGG(βββ)− βββ,

(2.29)

6For example, refer to the expression (3.9) in Hommes and Zhu (2014) for the special 1-dimensional
case n = 1 and bbb2 = 000. In Section 3 we consider the New Keynesian model with two forward-looking
variables and compute the (complicated) expressions of G1(β1, β2) and G2(β1, β2) explicitly.

7The Schur-Cohn criterion theorem provides necessary and sufficient conditions for all eigenvalues to
lie inside the unit circle, see Elaydi (1999). For specific models, one may find sufficient conditions that are
independent of βββ to guarantee that all eigenvalues of bbb1βββ

2 + bbb2, for each βi ∈ [−1, 1], are inside the unit
circle. For example, in the case of the NK model, the Taylor principle is a sufficient condition to ensure
that all eigenvalues of bbb1βββ

2 + bbb2 lie inside the unit circle for all βi ∈ [−1, 1]; see Section 3.2, Corollary 2
and Appendix E.

8See Evans and Honkapohja (2001) for a discussion and mathematical treatment of E-stability.
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where xxx(ααα,βββ) is the mean given by (2.25) and GGG(βββ) is the diagonal first-order autocorre-

lation matrix. A BLE (ααα∗,βββ∗) corresponds to a fixed point of the ODE (2.29). Moreover,

a BLE (ααα∗,βββ∗) is locally stable under SAC-learning if it is a stable fixed point of the ODE

(2.29). Therefore, we have the following property of SAC-learning stability:

Proposition 2 A BLE (ααα∗,βββ∗) is locally stable (E-stable) under SAC-learning if

(i) all eigenvalues of (III − bbb1βββ
∗2 − bbb2)−1(bbb1 + bbb2 − III) have negative real parts9, and

(ii) all eigenvalues of DDDGGGβββ(βββ∗) have real parts less than 1, where DDDGGGβββ is the Jacobian

matrix with the (i, j)-th entry ∂Gi
∂βj

.

Proof. See Appendix C.

Recall from Subsection 2.1 that Gi(β1, β2, · · · , βn) ∈ (−1, 1) so that at least one BLE

exists. The proposition above implies that the BLE may be E-stable under SAC-learning.

2.2 Estimation of BLE

As our application to the NK model will illustrate in the next section, finding an

analytical expression for a BLE is usually not possible. Therefore we provide a general

numerical iteration method to estimate a BLE of the linear system (2.10) and (2.11).

The main challenge here is the joint estimation of the structural parameters and the BLE

belief parameters βββ∗ that satisfy a highly non-linear consistency (fixed point) constraint

βββ∗ = G(βββ∗). The estimation method proceeds in two steps: we first use the notion of

iterative E-stability to find an approximate BLE for a given set of structural parameters,

as described in Algorithm I below. An advantage of this method is that when it converges,

the BLE must be stable under adaptive learning. We next propose an iterative estimation

procedure for the structural and the belief parameters as summarized in Algorithm II

below, which is closely linked to the notion of iterative E-stability and which is a recursion

of Bayesian estimations of linear models. We first re-write the system by augmenting xxxt

with uuut to obtain[
III −b−b−b3

000 III

][
xxxt

uuut

]
=

[
bbb0

aaa

]
+

[
bbb2 000

000 ρρρ

][
xxxt−1

uuut−1

]
+

[
bbb1 000

000 000

][
xxxet+1

uuuet+1

]
+

[
bbb4 000

000 III

][
vvvt

εεεt

]
. (2.30)

Define10 [
xxxt

uuut

]
= St,

[
vvvt

εεεt

]
= ηt,

[
III −b−b−b3

000 III

]
= γ̃, γ̃−1

[
bbb0

aaa

]
= γ̄, γ̃−1

[
bbb2 000

000 ρρρ

]
= γ1,

9The Routh-Hurwitz criterion theorem provides sufficient and necessary conditions for all the n eigen-
values having negative real parts, see Brock and Malliaris (1989).

10We assume the invertibility conditions of the corresponding matrices are satisfied throughout the
paper.
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γ̃−1

[
bbb1 000

000 000

]
= γ2, γ̃

−1

[
bbb4 000

000 III

]
= γ3.

We can then re-write the law of motion as

St = γ̄ + γ1St−1 + γ2S
e
t+1 + γ3ηt. (2.31)

The agent’s PLM, the corresponding one-step ahead expectations and the implied

ALM are given as11


St = ααα + βββ(St−1 −ααα) + δtδtδt,

Set+1 = ααα + βββ2(St−1 −ααα),

St = (γ̄ + γ2(ααα− βββ2ααα)) + γ1St−1 + γ2βββ
2St−1 + γ3ηt.

(2.32)

Our main goal in this section is to estimate log-linearized DSGE models, where the mean

α∗α∗α∗ is available based on (2.26). Without loss of generality, we focus on the case where

α∗α∗α∗ = 0. Denoting by ΓΓΓ(0) and ΓΓΓ(1) the variance-covariance and first-order covariance

matrices as before, one can show that12

V ec(ΓΓΓ(0)) = [I −M(β∗β∗β∗)⊗M(β∗β∗β∗)]−1(γ3 ⊗ γ3)V ec(ΣηΣηΣη),

V ec(ΓΓΓ(1)) = [I ⊗M(β∗β∗β∗)]V ec(ΓΓΓ(0)),
(2.33)

where M(βββ∗) = γ1 + γ2β
∗β∗β∗2, and ΣηΣηΣη is the variance-covariance matrix of i.i.d disturbances

ηt. This implies that βj
∗ =

V ec(ΓΓΓ(1))N(j−1)+j

V ec(ΓΓΓ(0))N(j−1)+j
= Gj(βββ

∗, θ), 1 ≤ j ≤ N , where θ represents

the set of structural parameters in γ1, γ2 and γ3. Then every BLE satisfiesSt = γ1St−1 + γ2β
∗β∗β∗2St−1 + γ3ηt,

β∗j =
V ec(V ec(ΓΓΓ(1))N(j−1)+j

V ec(ΓΓΓ(0))N(j−1)+j
= Gj(βββ

∗, θ), 1 ≤ j ≤ N.
(2.34)

The E-stability conditions of Proposition 2 are easily simplified to the case with zero mean.

Accordingly, a BLE (000, βββ∗) is locally stable if all eigenvalues of (I−γ1−γ2β
∗β∗β∗2)(γ1 +γ2−I)

have negative real parts and all eigenvalues of DGβββ(βββ∗) have real parts less than one. Note

that the first condition governs the stability of mean coefficients, while the second condi-

tion relates to stability of first-order autocorrelation coefficients independent of α∗α∗α∗.

11Without loss of generality, we assume the first N variables in St are the forward-looking variables
and we introduce zeros for the remaining state variables and exogenous shocks.

12See Appendix B.
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Iterative E-stability and Estimation of BLE

The first-order autocorrelation coefficients βββ∗ in (2.34) are functions in terms of the

structural parameters θ, which satisfy the nonlinear equilibrium conditions G(βββ∗, θ) = βββ∗

and cannot be computed analytically. In order to find a BLE for a given θ, we use a

simple fixed-point iteration, which is formalized below in Algorithm I.

Algorithm I: Approximation of a BLE using Iterative E-stability

Denote by θ the set of structural parameters, and by G(β(k)β(k)β(k), θ) the first-order autocorre-
lation function for a given θ.

• Step (0): Initialize the vector of learning parameters at β(0)β(0)β(0).

• Step (I): At each iteration k, using the first-order autocorrelation functions, update
the vector of learning parameters as

β(k)β(k)β(k) = G(β(k−1)β(k−1)β(k−1), θ), (2.35)

where G(β(k−1)β(k−1)β(k−1), θ) is known from iteration k − 1.

• Step (II): Terminate if ||β(k)β(k)β(k)−β(k−1)β(k−1)β(k−1)||p < ε, for a small scalar ε > 013 and a suitable
norm distance ||.||p, otherwise repeat Step (I).

A BLE (000,β∗β∗β∗) is locally stable under (2.35) if all eigenvalues of DGβββ(β∗β∗β∗) lie inside

the unit circle. Then the equilibrium is said to be iteratively E-stable. When Algorithm

I terminates for some K at a small pre-specified ε, we say that it has converged to β(K)β(K)β(K).

First note that, if Algorithm I converges, it converges to an approximate BLE since

||β(K+1)β(K+1)β(K+1) − β(K)β(K)β(K)|| < ε⇒ ||G(β(K)G(β(K)G(β(K))− β(K)β(K)β(K)|| < ε⇒ G(β(K)G(β(K)G(β(K)) ≈ β(K)β(K)β(K).

Further note that, there is a simple connection between iterative E-stability and E-stability

of β∗β∗β∗: for E-stability, the real parts of all eigenvalues of DGβββ(β∗β∗β∗) must be less than

one, while iterative E-stability requires the eigenvalues to lie inside the unit circle. This

immediately implies that iterative E-stability is a stronger condition than E-stability,

which gives us the following corollary:

Corollary 1 Iterative E-stability of β∗β∗β∗ implies E-stability of β∗β∗β∗. Therefore if Algorithm

I converges, it converges to an E-stable approximate BLE.

The iteration function in (2.35) plays an important role for the above corollary, where

our choice of the function G(.) reduces Algorithm I to the simplest fixed-point iteration

13Throughout the remainder of this paper, we use the common L1-Norm as our norm distance, i.e.

||β(k)β(k)β(k) − β(k−1)β(k−1)β(k−1)||p =
∑N
j=1 |β

(k)
j − β(k−1)

j |.
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known as iterative E-stability in the adaptive learning literature (Evans & Honkapohja,

2001). Iterations of this type have been used as an eductive learning approach in the

earlier literature, see e.g. DeCanio (1979), Bray (1982) and Evans (1985). In this paper,

we use it as our approximation method, which allows us to eliminate E-unstable BLE

without additional steps. As an alternative, one could also consider a Quasi-Newton

iteration of the following form:

β(k)β(k)β(k) = β(k−1)β(k−1)β(k−1) −DFβββ(β(k−1)β(k−1)β(k−1), θ)−1F (β(k−1)β(k−1)β(k−1), θ), (2.36)

where F (βββ, θ) = βββ−G(βββ, θ) and DFβββ(βββ, θ) denotes the Jacobian of F (βββ, θ)14. This latter

algorithm has been used in e.g. Farmer et. al. (2009) to compute MSV-solutions in

Markov-switching models. However, a downside of the Quasi-Newton iteration in our

context is that both E-stable and E-unstable BLE are locally stable under (2.36), which

means that this iteration method is not informative about E-stability of BLE15. Therefore

we use the notion of iterative E-stability in our estimations.

The discussion up to this point is based on finding E-stable BLE for a given set

of structural parameters θ. In the following, we provide a straightforward extension of

Algorithm I to accommodate the joint estimation of the structural parameters and the

BLE parameters. In order to estimate the model, we add a set of measurement equations

to the law of motion in (2.34) as follows:

Yt = ψ0(θ) + ψ1(θ)St + ht, (2.37)

where Yt denotes a vector of observable variables, ht is a vector of measurement errors,

ψ0(θ) and ψ1(θ) are matrices of the structural parameters that relate the state variables

St to the observable variables Yt. Together with (2.34), (2.37) yields the state-space

representation of the DSGE model under BLE. The model is linear in the state variables

St, but the BLE learning parameters βββ∗ satisfy a nonlinear constraint in terms of the

structural parameters θ to be estimated. On the one hand, whenever βββ is temporarily

fixed at some βββ(k) at any iteration k, the model reduces to a linear state-space model that

can be estimated using standard Bayesian likelihood methods. On the other hand, given

the structural parameters θ one can update the fixed value of βββ as βββ(k+1) = G(βββ(k), θ).

Based on this, we consider an iterative routine where the structural parameters θ and belief

parameters βββ are updated sequentially until convergence. The estimation is summarized

below in Algorithm II.

14At each iteration k, we approximate the Jacobian using ∂Fi(β
(k)β(k)β(k))

∂β
(k)
j

≈ Fi(β
(k)β(k)β(k)+h~ej)−Fi(β

(k)β(k)β(k))
h , 1 ≤ i, j ≤ N ,

where ~ej denotes a suitable unit vector.
15See Appendix D for a formal treatment of this and our online appendix for an example.
16For a detailed textbook derivation of the likelihood function and the posterior distribution, see e.g.
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Algorithm II: Bayesian Estimation of BLE

Denote by Y1:T = {Y1, · · · , YT } the matrix of the observable variables up to period T , and by
p(θ) the prior distributions for the structural parameters θ that appear in matrices γ1, γ2 and
γ3. Consider the system characterized by (2.34) and (2.37):

St = γ1(θ)St−1 + γ2(θ)β∗β∗β∗2St−1 + γ3(θ)ηt,

β∗j = Gj(βββ
∗, θ), 1 ≤ j ≤ N,

Yt = ψ0(θ) + ψ1(θ)St + ht.
(2.38)

• Step (0) Initialize a set of learning parameters β(0)β(0)β(0). At the (temporarily) fixed β(0)β(0)β(0), the
system (2.38) reduces to a standard state-space representation for the linearized DSGE
model.

• Step (I-a) At each iteration k, one can obtain the likelihood function using the Kalman
filter and the corresponding posterior distribution conditional on β(k−1)β(k−1)β(k−1) as follows16:

p(Y1:T |θ,βββ(k−1)) =

T∑
t=1

p(Yt|Y1:T−1, θ,βββ
(k−1)); p(θ|Y1:T ,βββ

(k−1)) =
p(Y1:T |θ,βββ(k−1))p(θ)

p(Y1:T ,βββ(k−1))
,

(2.39)
where β(k−1)β(k−1)β(k−1) is obtained from iteration k − 1, and p(Y1:T ,β

(k−1)β(k−1)β(k−1)) denotes the marginal
likelihood function. Denote by θ̂(k) the conditional posterior mode obtained from

θ̂(k) = argmax
θ

p(θ|Y1:T ,β
(k−1)β(k−1)β(k−1)). (2.40)

• Step (I-b) Using θ̂(k), update the matrix of learning parameters:

β
(k)
jβ
(k)
jβ
(k)
j = Gj(β

(k−1)β(k−1)β(k−1), θ̂(k)), 1 ≤ j ≤ N. (2.41)

• Proceed to Step (II) if ||β(k)β(k)β(k)−β(k−1)β(k−1)β(k−1)|| < ε and ||θ̂(k)− θ̂(k−1)|| < ε for a given scalar ε > 0,
otherwise repeat Step (I).

• Step(II) Use the Metropolis-Hastings algorithm to construct the posterior distribution
conditional on the BLE at the posterior mode.
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A BLE (000,β∗β∗β∗) obtained from Algorithm II, satisfying G(β∗β∗β∗, θ∗) = β∗β∗β∗ and θ∗ =

argmax
θ

p(θ|Y1:T ,β
∗β∗β∗), is stable under learning if all eigenvalues of DG(βββ∗, θ∗) lie inside

the unit circle17,18.

The estimation routine described above corresponds to a straightforward extension

of Algorithm I, where we allow the structural parameters θ (and therefore the matrices

γ1, γ2 and γ3) to be re-estimated at each step of the fixed-point iteration in (2.35). Our

approach is similar to e.g. the computation of initial beliefs in Slobodyan & Wouters

(2012), where the belief coefficients in βββ are treated as additional structural parameters

and estimated along with θ. The main difference here is that we compute the equilibrium

beliefs consistent with the underlying BLE, such that the first-order autocorrelations in

the PLM coincide with the ALM at the estimated posterior mode. In other words, the

belief parameters are consistent with the actual realizations. Our estimation approach

is fast and easy to implement, because it allows us to approximate and estimate a BLE

at the posterior mode through a sequence of linear models. Since the beliefs in βββ(k) are

updated at each step k based on the first-order autocorrelations of the state variables,

the estimated parameters θ̂(k) tend to lead βββ(k) towards the empirically relevant region.

In turn, this allows the system to rapidly converge to the underlying BLE as we illustrate

in the next section. Once we find a BLE along with estimated structural parameters

under Algorithm II, we check for iterative E-stability and multiplicity of stable equilibria

using Algorithm I with θ∗ and randomized initial values. We further provide Monte Carlo

simulations under (2.8) to examine the behaviour of the system under SAC-learning.

As an alternative to this algorithm that directly estimates a BLE, we also consider an

estimation routine with SAC-learning based on the Kalman filter output. Since iterative

E-stability guarantees convergence under SAC-learning, allowing the agents to learn si-

multaneously with the Kalman filter recursions serves as an indirect approach to estimate

a BLE, as well as a robustness check for the empirical fit of a BLE. The model under

SAC-learning is conditionally linear for a given set of belief coefficients and therefore one

can use the standard Kalman filter to obtain the likelihood function, where the beliefs

are updated in each step using the Kalman filter output. Similar approaches have been

used in estimating constant gain least squares and Kalman gain adaptive learning models

in Milani (2005, 2007) and Slobodyan & Wouters (2012) respectively. In this paper we

Greenberg (2012) or Herbst & Schorfheide (2015). In this paper, we make use of the routines available
in Dynare to estimate the model at each step for a given set of fixed learning parameters.

17In order to formally rule out explosive outcomes, one can augment the algorithm with a projection
facility, where the next iteration is projected to a point inside the unit cube if the iteration G(βββk−1) leads

to |β(k)
i | > 1 for some 1 ≤ i ≤ N . We do not observe explosive outcomes in the NK model considered in

this paper and therefore do not use a projection facility.
18The eigenvalue condition for Algorithm II with (2.40) and (2.41) is different from the eigenvalue

condition for Algorithm I with (2.35), since the second argument θ∗ of G(β∗β∗β∗, θ∗) also depends on β∗β∗β∗; see
Appendix D for more details.
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focus on the decreasing-gain SAC-learning algorithm since our primary interest is the

estimation of the underlying fixed-point BLE, rather than the time-variation in beliefs.

See Appendix D for a more detailed description of this approach with SAC-learning.

3 Application: a New Keynesian model

3.1 A baseline model

In this section we apply our results within the framework of a standard New Keynesian

model along the lines of Woodford (2003) and Gaĺı (2008). Consider a simple version,

linearized around the zero inflation steady state, given by{
yt = yet+1 − ϕ(rt − πet+1) + uy,t,

πt = λπet+1 + γyt + uπ,t,
(3.1)

where yt is the output gap, πt is the inflation rate, yet+1 and πet+1 are expected output gap

and expected inflation.

Following Bullard and Mitra (2002) and Bullard et al. (2008) we study the NK-model

(3.1) with adaptive learning. The terms uy,t, uπ,t are stochastic shocks and are assumed

to follow AR(1) processes

uy,t = ρyuy,t−1 + εy,t, (3.2)

uπ,t = ρπuπ,t−1 + επ,t, (3.3)

where ρi ∈ [0, 1) and {εi,t} (i = y, π) are two uncorrelated i.i.d. stochastic processes with

zero mean and finite absolute moments with corresponding variances σ2
i .

The first equation in (3.1) is an IS curve that describes the demand side of the economy.

In an economy of rational or boundedly rational agents, it is a linear approximation to a

representative agent’s Euler equation. The parameter ϕ > 0 is related to the elasticity of

intertemporal substitution in consumption of a representative household, and its inverse

can be interpreted as a risk aversion coefficient. The second equation in (3.1) is the

New Keynesian Phillips curve which describes the aggregate supply relation. This is

obtained by averaging all firms’ pricing decisions.The parameter γ is related to the degree

of price stickiness in the economy and the parameter λ ∈ [0, 1) is the discount factor of a

representative household.

We supplement the equations in (3.1) with a standard Taylor-type policy rule, which

represents the behavior of the monetary authority in setting the nominal interest rate:

rt = φππt + φyyt, (3.4)
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where rt is the deviation of the nominal interest rate from the value that is consistent

with inflation at target and output at potential. The parameters φπ, φy, measuring the

response of rt to the deviation of inflation and output from long run steady states, are

assumed to be non-negative19.

Substituting the Taylor-type policy rule (3.4) into (3.1) and writing the model in

matrix form gives {
xxxt = BBBxxxet+1 +CCCuuut,

uuut = ρρρuuut−1 + εεεt,
(3.5)

where xxxt = [yt, πt]
′,uuut = [uy,t, uπ,t]

′, εεεt = [εy,t, επ,t]
′,BBB = 1

1+γϕφπ+ϕφy

[
1 ϕ(1− λφπ)

γ γϕ+ λ(1 + ϕφy)

]
,

CCC = 1
1+γϕφπ+ϕφy

[
1 −ϕφπ
γ 1 + ϕφy

]
, ρρρ =

[
ρy 0

0 ρπ

]
.

Before turning to BLE, we first consider the Rational Expectations Equilibrium.

3.2 Theoretical results

Comparing the NK model (3.5) with the general framework (2.10), we note that aaa = 000,

bbb0 = 000 and bbb2 = 000. The Rational Expectation Equilibrium (REE) fixed point in (2.15-2.18)

then simplifies to

(III −BBB)ξξξ = 000 (3.6)

ηηη = Bηηηρρρ+ C. (3.7)

Bullard and Mitra (2002) show that the REE is unique (determinate) if and only if

γ(φπ − 1) + (1− λ)φy > 0. The REE is then the stable stationary process with mean

x∗ = 0. (3.8)

In the symmetric case ρi = ρ for i = {y, π}, the REE x∗t satisfies

x∗t = (I− ρB)−1Cut. (3.9)

Thus its covariance is

ΣΣΣx∗ = E(x∗t − x∗)(x∗t − x∗)
′

= (1− ρ2)−1(I− ρB)−1CΣεεεΣεεεΣεεε[(I− ρB)−1C]
′
. (3.10)

Furthermore, the first-order autocorrelation of the i-element xi of x is equal to ρ. That

19In our online appendix we also discuss lagged and forward-looking Taylor rules, responding to lagged
and expected future values of yt and πt respectively.
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is, in this case the persistence of the REE coincides exactly with the persistence of the

exogenous driving force ut and the first-order autocorrelations of output gap and inflation

are the same, i.e. symmetric, equal to the autocorrelation in the driving force. Under

RE, inflation and output gap only inherit the persistence of the shocks.

Behavioral learning equilibria

Bullard and Mitra (2002) study adaptive learning in this NK setting. They consider

a PLM which coincides with the minimum state variable solution (MSV) of the form

xxxt = D̃DD + ẼEExxxet+1 + F̃FFuuut, (3.11)

where D̃DD, ẼEE and F̃FF are conformable matrices. We will consider learning with misspec-

ification. As in the general setup in Section 2, we assume that agents are boundedly

rational and use simple univariate linear rules to forecast the output gap yt and inflation

πt of the economy. Therefore we deviate from Bullard and Mitra (2002) in two important

ways: (i) our agents cannot observe or do not use the exogenous shocks uuut, and (ii) agents

do not fully understand the linear stochastic structure and do not take into account the

cross-correlation between inflation and output. Rather our agents learn simple univariate

AR(1) forecasting rules for inflation and output gap, as in (2.2). However these AR(1)

rules indirectly, in a boundedly rational way, take exogenous shocks and cross-correlations

of endogenous variables into account as agents learn the two parameters of each AR(1)

rule consistent with the observable sample averages and first-order autocorrelations of the

state variables inflation and output gap. The use of simple AR(1) rule is supported by

evidence from the learning-to-forecast laboratory experiments in the NK framework in

Adam (2007), Assenza et al. (2014) and Pfajfar and Zakelj (2016).

The actual law of motion (3.5) becomes{
xxxt = BBB[ααα + βββ2(xxxt−1 −ααα)] +CuCuCut,

uuut = ρρρut−1 + εεεt.
(3.12)

For the actual law of motion (ALM) (3.12), the REE determinacy condition γ(φπ −
1) + (1 − λ)φy > 0 implies that the ALM is stationary for all βββ, see Appendix E. Thus

the means and first-order autocorrelations are

xxx = (III −BBBβββ2)−1(BBBααα−BBBβββ2ααα),

GGG(ααα,βββ) =

[
G1(βy, βπ) 0

0 G2(βy, βπ)

]
=

[
corr(yt, yt−1) 0

0 corr(πt, πt−1))

]
.
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In order to obtain analytical expressions for G1(βy, βπ) and G2(βy, βπ) we focus on

the symmetric case with ρy = ρπ = ρ. The first-order autocorrelations of output gap

and inflation can be expressed in terms of the structural parameters through complicated

calculations (see Appendix F20)

G1(βy, βπ) =
f̃1

g̃1

(3.13)

G2(βy, βπ) =
f̃2

g̃2

(3.14)

where

f̃1 = σ2
π

{
(ρ+ λ1 + λ2 − λβ2

π)[1− λβ2
π(ρ+ λ1 + λ2)] + [λβ2

π(ρλ1 + ρλ2 + λ1λ2)−

ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2
πρλ1λ2]

}
+ σ2

y

{
(ϕφπ(ρ+ λ1 + λ2)− ϕβ2

π))

[ϕφπ − ϕβ2
π(ρ+ λ1 + λ2)] + [ϕβ2

π(ρλ1 + ρλ2 + λ1λ2)− ϕφπρλ1λ2]

[ϕφπ(ρλ1 + ρλ2 + λ1λ2)− ϕβ2
πρλ1λ2]

}
,

g̃1 = σ2
π

{
[(1 + λ2β4

π)− 2λβ2
π(ρ+ λ1 + λ2) + (1 + λ2β4

π)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
π)(ρ+ λ1 + λ2)− 2λβ2

π(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
π)ρλ1λ2]

}
+σ2

π

{
[((ϕφπ)2 + ϕ2β4

π)− 2ϕφπϕβ
2
π(ρ+ λ1 + λ2) + ((ϕφπ)2 + ϕ2β4

π)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[((ϕφπ)2 + ϕ2β4
π)(ρ+ λ1 + λ2)− 2ϕφπϕβ

2
π(ρλ1 + ρλ2 + λ1λ2)

+((ϕφπ)2 + ϕ2β4
π)ρλ1λ2]

}
, (3.15)

f̃2 = σ2
y

{
γ2[(ρ+ λ1 + λ2)− ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]

}
+ σ2

π

{
[(1 + ϕφy)(ρ+ λ1 + λ2)− β2

y ] ·

[(1 + ϕφy)− β2
y(ρ+ λ1 + λ2)] + [β2

y(ρλ1 + ρλ2 + λ1λ2)− (1 + ϕφy)ρλ1λ2] ·

[(1 + ϕφy)(ρλ1 + ρλ2 + λ1λ2)− β2
yρλ1λ2]

}
,

g̃2 = σ2
y

{
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)2]

}
+σ2

π

{
[((1 + ϕφy)

2 + β4
y)− 2(1 + ϕφy)β

2
y(ρ+ λ1 + λ2) + ((1 + ϕφy)

2 + β4
y)

(ρλ1 + ρλ2 + λ1λ2)]− ρλ1λ2[((1 + ϕφy)
2 + β4

y)(ρ+ λ1 + λ2)− 2(1 + ϕφy)β
2
y ·

(ρλ1 + ρλ2 + λ1λ2) + ((1 + ϕφy)
2 + β4

y)ρλ1λ2]
}
, (3.16)

20Appendix F employs the VARMA(1,∞) representation of the model. Although it is possible to obtain
the expressions of GGG(ααα,βββ) using the direct method in Appendix B, the analytical expressions are much
more complicated. Numerical computations based on the two methods are consistent and also coincide
with the simple numerical simulation of the first-order autocorrelation coefficients of output gap and
inflation obtained from simulated time series generated by the system (3.12), confirming the complicated
expressions (3.13-3.18).
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λ1 + λ2 =
β2
y + (γϕ+ λ+ λϕφy)β

2
π

1 + γϕφπ + ϕφy
, (3.17)

λ1λ2 =
λβ2

yβ
2
π

1 + γϕφπ + ϕφy
. (3.18)

From these expressions, it is easy to see that G1(βy, βπ) and G2(βy, βπ) are analytic

functions with respect to βy and βπ, independent of ααα.

The actual law of motion (3.5) depends on eight parameters ϕ, λ, γ, φy, φπ, ρ, σ2
π and

σ2
y. Only the ratio σ2

π/σ
2
y of noise terms matters for the persistence Gi(βy, βπ) in (3.13)

and (3.14). Hence, the existence of BLE (ααα∗,βββ∗) depends on seven structural parameters

ϕ, λ, γ, ρ, φy, φπ and σ2
π/σ

2
y of the NK-model.

Using Proposition 1 and Proposition 2 we have the following properties for the New

Keynesian model:

Corollary 2 Under the Taylor rule (3.4), if γ(φπ − 1) + (1− λ)φy > 0, then there exists

at least one BLE (ααα∗,βββ∗), where ααα∗ = 000 = xxx∗.

Corollary 3 Under the Taylor rule (3.4) and the condition γ(φπ − 1) + (1 − λ)φy > 0,

a BLE (ααα∗,βββ∗) is locally stable under SAC-learning if all eigenvalues of DDDGGGβββ(βββ∗) =(
∂Gi
∂βj

)
βββ=βββ∗

have real parts less than 1.

Proof. See Appendix G.

It is useful to discuss the special case in which shocks are not persistent, that is, ρ = 0

(no autocorrelation in the shocks). It is easy to see that

G1(0, 0)
∣∣
ρ=0

= 0, G2(0, 0)
∣∣
ρ=0

= 0.

That is to say (000,000) is a BLE for ρ = 0. Hence, when there is no persistence in the

exogenous shocks, the BLE coincides with the rational expectation equilibrium.

It is also useful to briefly discuss the non-stationary case, that is, when the coefficient

matrixBBB for expectations xxxet+1 in (3.5) has at least one eigenvalue outside the unit circle21.

In that case, SAC-learning of an AR(1) rule typically leads to explosive dynamics with

αt → ±∞ and βt → 1. In the non-stationary case, learning of BLE thus typically leads

to explosive time paths of inflation and output.

Persistence amplification

To illustrate the typical output-inflation dynamics under BLE, we present a calibration

exercise for empirically plausible parameter values.

21This case may only occur if the condition γ(φπ − 1) + (1− λ)φy > 0 is violated.
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As in the Clarida et al. (1999) calibration we fix ϕ = 1, λ = 0.99. We fix γ = 0.04,

which lies between the calibrations γ = 0.3 in Clarida et al. (1999) and γ = 0.024 in

Woodford (2003). For the exogenous shocks, we set the ratio of shocks σπ
σy

= 0.5, which

is within the possible range suggested in Fuhrer (2006). We consider the symmetric

case ρy = ρπ = ρ = 0.5, with weak persistence in the shocks. The baseline parameters

on the policy response to inflation deviation and output gap follow a broad literature,

φπ = 1.5, φy = 0.5, see for example Fuhrer (2006, 2009). At these parameter values,

the two eigenvalues of the Jacobian matrix DDDGGGβββ(βββ∗) are 0.5012 ± 0.7348i (with real

parts less than 1), which implies that the BLE is E-stable under SAC-learning based on

our theoretical results. The numerical results shown below are robust across a range of

plausible parameter values.

Figure 1 illustrates the existence of a unique E-stable BLE (β∗y , β
∗
π) = (0.9, 0.9592)22.

In order to obtain (β∗y , β
∗
π), we numerically compute the corresponding fixed point β∗π(βy)

satisfying G2(βy, β
∗
π) = β∗π for each βy and the corresponding fixed point β∗y(βπ) satisfying

G1(β∗y , βπ) = β∗y for each βπ as illustrated in Figure 1. Hence their intersection point

(β∗y , β
∗
π) satisfies G1(β∗y , β

∗
π) = β∗y and G2(β∗y , β

∗
π) = β∗π.

A striking and typical feature of the BLE is that the first-order autocorrelation coef-

ficients of output gap and inflation (β∗y , β
∗
π) = (0.9, 0.9592) are substantially higher than

those at the REE, that is, the persistence is much higher than the persistence ρ(= 0.5) of

the exogenous shocks. We refer to this phenomenon as persistence amplification. Agents

fail to recognize the exact linear structure and cross-correlations of the economy, but rather

learn to coordinate on simple univariate AR(1) rules consistent with simple observable

statistics, the mean and the first-order autocorrelations of inflation and output gap. As

a result of this self-fulfilling mistake, shocks to the economy are strongly amplified.

Figure 2 illustrates how these results depend on the persistence ρ of the exogenous

shocks. The figure shows the BLE, i.e. the first-order autocorrelations β∗y of output

gap and β∗π of inflation, as a function of the parameter ρ. This figure clearly shows the

persistence amplification along BLE, with much higher persistence than under RE, for all

values of 0 < ρ < 1. Especially for ρ ≥ 0.5 we have β∗y , β
∗
π ≥ 0.9, implying that output

gap and inflation have significantly higher persistence than the exogenous driving forces.

Figure 2 (right plot) also illustrates the volatility amplification under BLE compared to

REE. For output gap the ratio of variances σ2
y/σ

2
y∗ reaches a peak of about 2.5 for ρ ≈ 0.75,

while for inflation the ratio of variances σ2
π/σ

2
π∗ reaches its peak of about 3.5 for ρ ≈ 0.65.

These results suggest that, given the same parameter values, the moments of inflation

and output gap implied by BLE and REE are substantially different due to persistence

and volatility amplification under BLE. Therefore if the model is estimated on the same

dataset under BLE and REE, one might expect important differences in the resulting

22Note that (α∗y, α
∗
π) = (0, 0).
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Figure 1: A unique BLE (β∗y , β
∗
π) = (0.9, 0.9592) obtained as the intersection point of the

fixed point curves β∗π(βy) and β∗y(βπ). The BLE exhibits strong persistence amplification
compared to REE (red dot, with ρ = 0.5). Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, ρ =
0.5, φπ = 1.5, φy = 0.5, σπ

σy
= 0.5.
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Figure 2: BLE (β∗y , β
∗
π) as a function of the persistence ρ of the exogenous shocks. (a)

β∗i (i = 1, 2) with respect to ρ; (b) the ratio of variances (σ2
y/σ

2
y∗ , σ

2
π/σ

2
π∗) of the BLE

(β∗y , β
∗
π) w.r.t. the REE. Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, φπ = 1.5, φy =

0.5, σπ
σy

= 0.5.
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parameter estimates and the resulting shock propagation mechanism of the model. We

explore this implication in the next section by estimating the NK-model under BLE and

REE based on U.S. data.

3.3 Estimation of the New Keynesian Model

Sample Period and Prior Distributions

In this section, we compare the empirical fit of the 3-equation New Keynesian model

under REE, BLE and SAC-learning23. We augment the Taylor rule with an i.i.d monetary

policy shock and an interest rate smoothing parameter to allow the model to match the

inertia of the historical interest rate:

rt = ρrrt−1 + (1− ρr)(φππt + φxyt) + εr,t. (3.19)

We estimate the small-scale system of (3.1) and (3.19) for the U.S economy over the

period 1966:I-2016:IV using quarterly macroeconomic data. We also investigate whether

our results are sensitive to structural breaks such as the large volatility reduction for most

macroeconomic time series during the mid-80s, often referred to as the Great Moderation,

or the near-zero level of nominal interest rates that followed the 2007-08 crisis period.

We use the following measurement equations for output gap, inflation and interest

rate24 without measurement errors:
log(yobst ) = γ̄ + yt

log(πobst ) = π̄ + πt

log(robst ) = r̄ + rt,

(3.20)

where yobst , πobst and robst denote the quarterly historical output gap, inflation and

interest rate, while γ̄, π̄ and r̄ correspond to the historical mean of each time series re-

spectively. We use the cycle component of HP-filtered output as our primary measure of

output gap, and we also present our results with an output gap based on CBO’s measure

of the potential output level. A third alternative measure based on de-trended output

can be found in Appendix H. The results are qualitatively similar across all measures,

although some parameters such as the slope of the Phillips curve γ are sensitive to which

measure is used.

23We only present the estimation results for the baseline model here, but similar results hold in more
realistic setups. In particular, our Online Appendix considers a hybrid version of the New Keynesian
model with lagged inflation and output gap, and our follow-up paper Hommes et. al. (2019) considers
the medium-scale Smets-Wouters (2007) model under BLE.

24See Appendix I for more details on the observable variables.
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The model is estimated using the same prior distributions under all specifications,

which guarantees that any differences that arise between the estimations is due to the

difference in the expectation formation rule. The prior distributions are kept close to

those commonly assumed in the literature. Following An & Schorfheide (2007), the risk

aversion coefficient τ = 1
ϕ

is assigned a gamma distribution centered at 2 with a standard

deviation of 0.5. The slope of the Phillips curve γ is assigned a Beta distribution with

mean 0.3 and standard deviation 0.15 which falls between the prior in An & Schorfheide

(2007) and Smets & Wouters (2007), covering both flat and steep cases for the Phillips

curve25. The policy response parameters for output gap φy and inflation φπ are assigned

beta distributions centered around 0.5 and 1.5, which are standard values associated with

the Taylor rule in the literature. The autocorrelation coefficients have a Beta distribution

centered at 0.5, and the standard deviations for the shock processes are assumed to follow

an Inverted Gamma distribution with a mean of 0.1 and standard deviation of 2, same as

in Smets & Wouters (2007). The priors for the historical mean of inflation rate, output

growth and interest rate are normal distributions centered at their pre-sample means of

0.47, −0.2 and 0.72 respectively, where the pre-sample period covers data from 1954:I to

1965:IV. Finally, we fix the HH discount rate λ at 0.99, which is a standard assumption

in most empirical studies.

Convergence Diagnostics

Before moving onto the posterior estimation results, it is useful to briefly discuss the

convergence diagnostics of BLE and SAC-learning models. Our discussion here is based

on the results with the HP-filtered measure of output gap, but similar results follow

under the two alternative measures. Under BLE, initializing both βy and βπ at fairly

low values of 0.5 and using a convergence criterion ε = 10−5, our estimation algorithm

takes only 5 steps to converge26. The resulting BLE is (β∗y , β
∗
π) = (0.88, 0.89) at the final

step. This is fairly close to the first-order autocorrelations of the data over this period,

given as (0.87, 0.89). The left panel of Figure 3 shows the norm distances between two

consecutive sets of βββ(k) and θ(k) at each step k, both of which rapidly converge towards 0.

The largest eigenvalue of the Jacobian matrix DG(βββ(k), θ(k)) remains strictly inside the

unit circle during the estimation, and stabilizes after the second step. The right panel

of the same figure shows the convergence of Algorithm I towards βββ∗ at the estimated

posterior mode with randomized initial values, suggesting that the estimated equilibrium

is the unique iteratively E-stable BLE. Similar results emerge when we examine the Monte

25In particular if we denote the nominal price stickiness as ω, its relation with γ is given as γ =
(1−λω)(1−ω)

ω (Gali, 2008). Smets & Wouters (2007) assume a prior for ω with mean 0.5.
26The results are robust to initial values of βy and βπ.
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Carlo simulations of the model under SAC-learning in Figure 4: the left panel shows the

histograms of βy and βπ over 1000 simulations, each of length 5000, under decreasing

gain learning, while the right panel shows the constant gain equivalent with a small gain

value of 0.001. It is readily seen that none of the distributions show signs of multiple

equilibria27. To formally check this, we provide the approximate distributions of βy and

βπ by smoothing the histograms and applying Hartigan’s Dip Test of Unimodality28.

The dip test does not reject the null hypothesis of unimodality, suggesting that there

is no evidence of multiple BLE at the estimated structural parameter values based on

the simulations. We also observe a small bias in the simulations for both cases, where

the peak of the distributions slightly deviates from the underlying BLE denoted by the

dotted line. These Monte Carlo simulations illustrate the advantage of SAC-learning

over the standard recursive least squares learning approach: although the autocorrelation

coefficients are fairly close to unity for both yt and πt, the time series never become

explosive in our simulations. This is due to the natural projection facility of SAC-learning

with autocorrelations always satisfying −1 ≤ β ≤ 1, which makes explosive time paths

less likely as discussed in Section 2.

Figure 5 shows the mean and persistence coefficients along with the filtered variables

of inflation and output gap under the SAC-learning estimation. For this specification,

following the recommendation in Galimberti & Jacqueson (2017), we use a training-sample

based initialization as follows: we use the unconditional moment of 0 for the intercept

coefficients, and the diffuse moment 0 for the estimated variance of each variable Rt
29. We

use five years over 1961:I-1965:IV as the transient period for the belief coefficients, and

compute the likelihood from 1966:I onwards. It is readily seen that the mean coefficients do

not substantially deviate from the unconditional mean of 0 and the persistence coefficients

indeed converge over the estimation sample, with final values of β∗ = (0.86, 0.89): this is

fairly close to the equilibrium resulting under the BLE estimation.

We observe similar convergence patterns and a unique equilibrium at the posterior

mode in our estimations with the CBO-based output gap measure. However, under this

alternative measure, we can find regions with multiple stable equilibria in a close neigh-

bourhood of estimated monetary policy and some of the structural parameters. A more

detailed discussion of this phenomenon is left to Section 4.

27αy and απ have similar distributions centered around 0; they are omitted here for brevity.
28Hartigan’s Dip Test is based on checking for multimodality by using the maximum difference be-

tween the empirical distribution, and the theoretical unimodal distribution function that minimizes the
maximum difference. The null hypothesis of the test is unimodality, see Hartigan & Hartigan (1985) for
more details.

29The initial choice of first-order autocorrelations does not matter since β1,t = − 1
2 regardless of β0,t.
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Figure 3: The estimated BLE is (β∗y , β
∗
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(b) β∗y and β∗π under decreasing gain learning.

Figure 4: Monte Carlo Simulations: frequency distributions and unimodality test for βy
and βπ resulting from 1000 simulations. Each simulation is of length 5000, initialized at
random values over the interval (0, 1). Hartigan’s unimodality test p-values are 0.98 and
0.94 for βy and βπ under constant gain simulations, and 0.99 and 0.99 for the decreasing
gain simulations. Hence the null hypothesis of unimodality is not rejected for any of the
distributions.

31



1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-6

-4

-2

0

2

4
Output Gap

Filtered Variable
Learning-Mean Coef.

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-1

0

1

2

3
Inflation

(a) Filtered Variables and mean parameters

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-1

-0.5

0

0.5

1
Output Gap

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
-1

-0.5

0

0.5

1
Inflation

(b) Persistence parameters

Figure 5: Filtered variables and learning parameters over the estimation sample under
SAC-learning, where Kalman filter output is used to update the belief coefficients. Con-
verged values of first-order autocorrelations are 0.86 and 0.89 for output gap and inflation
respectively.

Posterior Results: HP-filtered Output Gap

Table 2 presents the posterior estimation results for the REE, BLE and SAC-learning

models.30, where we use the cycle component of the HP-filtered historical output as our

measure of output gap. Starting with a comparison of the BLE and REE results, we

observe several important differences in the estimates of structural parameters: both

persistence parameters for the inflation and output shocks, ρπ and ρy, are substantially

lower under BLE, namely with 0.31 and 0.42 respectively, while they are 0.88 and 0.87

under REE. This is a direct consequence of the difference in the expectation formation

rule. As such, the estimation results confirm the persistence amplification property of

BLE: the backward-looking expectation formation rule endogenously generates additional

inertia for inflation and output gap, which in turn leads to much smaller persistence in

the exogenous shocks. The low autocorrelations in uπ and uy under BLE immediately

imply higher estimated standard deviations for the i.i.d shocks of these AR(1) processes

at 0.29 and 0.73, while these are 0.04 and 0.16 under REE31. Since interest-rate is not

30BLE and REE models are estimated using the Dynare toolbox (Adjemian et. al, 2011), while our
own toolbox is used for the SAC-learning estimations since it requires an additional learning step in the
filter recursions. The posterior distributions are constructed using the Metropolis-Hastings algorithm
with 250000 draws, using the first 50000 as the burn-in sample. The step size for the scale parameter
of the jumping distribution’s covariance matrix is adjusted in both models to obtain a rejection rate of
70% in both models, which is in the commonly assumed appropriate range for the MH algorithm.

31Note that for an AR(1) process xt = ρxxt−1 + ut, ut ∼ iid(0, σu), the unconditional variance is given
by var(x) = σu

1−ρ2x
. This implies, as ρx increases, var(x) also increases.
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forward-looking, this result does not extend to the interest-rate smoothing ρr, which

is estimated at 0.85 and 0.80 under BLE and REE respectively, while the volatility of

monetary policy shocks is the same at 0.29 under both specifications. The historical

mean parameters turn out fairly similar under both estimations, since they relate to

sample means of the observable variables and are not affected by the expectation rule.

The estimates of monetary policy parameters, φπ and φy, also turn out similar under both

estimations, with 1.36 and 0.48 under BLE, and 1.39 and 0.46 under REE. Finally turning

to the two structural parameters that determine the contemporaneous relation between

the state variables, both the risk aversion coefficient 1
ϕ

and the slope of the NKPC γ are

fairly different: these are estimated at 3.02 and 0.035 under BLE, while they are 4.27 and

0.007 under REE respectively. These differences arise due to altered cross-restrictions

under learning: the additional inertia that we introduce under BLE comes at the cost of a

weaker contemporaneous relation between the state variables and shocks. While the state

variables are only related to the shocks through 1
ϕ

and γ under BLE, they are also indirecly

related through expectations under REE. As a result, the risk aversion coefficient turns

out lower under learning, implying a larger direct impact from the ex-ante risk premium

on output gap under BLE. Similarly, γ turns out higher under BLE, implying a stronger

direct effect from output gap on inflation. It is also interesting to note that confidence

intervals for γ are almost mutually exclusive under these two specifications, with a lower

bound of 0.015 under BLE and an upper bound of 0.017 under REE32.

An important consequence of a higher Phillips curve slope and a lower risk aversion

coefficient under BLE is on the shock propagation: Figure 6 shows the impulse responses of

output gap and inflation to a monetary policy shock under BLE and REE at the posterior

mode33. The cumulative impact of the shock is larger under BLE, particularly for inflation,

but the initial impact is larger under REE since the shock affects current output gap and

inflation contemporaneously through expectations. Under BLE, the shock takes several

quarters to reach its full impact, leading to hump-shaped responses for both inflation and

output gap. The hump-shaped pattern is consistent with previous experimental evidence

on small forecasting rules (Adam, 2007), as well as with empirical studies in the literature,

where a contractionary monetary policy shock typically leads to hump-shaped decreases

in output and inflation with peaks after one to two years; see e.g. Leeper et al. (1996)

and Christiano et al. (1999). This effect is absent at REE since there no lagged state

variables in the model, and it shows that the persistence amplification at BLE is also

32As noted in the previous section, the first-order coefficients are computed based on the posterior
mode values. Therefore for completeness, the discussion and comparison of these results (both in this
section and in the upcoming ones) are based on the posterior mode. It is worth noting that, given the
small differences across the posterior means and modes, a similar discussion can be easily extended to
the posterior mean.

33Note that the shock size is the same under both specifications in this case, since the estimated
standard deviation of the monetary policy shock is 0.29 both under BLE and REE
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indirectly reflected in the system’s response to an exogenous monetary policy shock.

0 20 40

y
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(a) IRF of output gap.

0 20 40

:

-0.02

-0.01
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REE

(b) IRF of inflation

Figure 6: Impulse response functions of output gap and inflation to a one standard devi-
ation monetary policy shock.

Overall, our results suggest important differences in the estimated parameters and the

propagation of shocks under BLE. These changes lead to a substantial improvement in

the empirical fit, evident from the (log marginal) likelihood of −337 under BLE compared

with −348 under REE, which yields a Bayes’ Factor 4.78 in favor of BLE34. Comparing

the results to SAC-learning, it is readily seen that there are no substantial differences with

the BLE specification. Relative to the REE estimations, the exogenous shocks have lower

persistence and larger standard deviations, the risk aversion coefficient is lower, Phillips

curve slope is higher and monetary policy coefficients are similar. A noticeable difference

with the BLE model arises in the historical mean values of inflation and interest rate,

which turn out lower under the SAC-learning estimation. This is due to the fact that the

learning coefficients are time-varying under SAC-learning and Figure 5 suggests that they

are above zero on average, which drives down the estimates of the historical mean param-

eters35. Another difference with the BLE model arises in the Phillips curve slope, which

is somewhat higher under SAC-learning. However, the HPD-interval under SAC-learning

is also wider, suggesting that time-variation in beliefs introduces more uncertainty for

this parameter. Further, the point estimates under both BLE and SAC-learning speci-

fications fall within the HPD-interval of each other. Other than these small differences,

all parameter estimates are fairly close under BLE and SAC-learning, with implied HPD-

intervals well within the range of each other. The likelihood turns out to be −341 under

SAC-learning, which is still better than the fit of REE, with a Bayes’ Factor of 3.08 in

34Based on Jeffrey’s Guidelines (Greenberg, 2012), if the Bayes’ Factor in favor of a model is larger
than 2, then this provides decisive support for the model under consideration.

35Shutting off the learning dynamics about mean coefficients and letting the agents learn only about
the first-order autocorrelations indeed yields historical mean values similar to BLE.
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favor of SAC-learning, but slightly worse than BLE, with a Bayes’ Factor of 1.7 in favor

of BLE36. This result suggests that transitory dynamics and the resulting time-variation

in the learning parameters do not improve the model fit in our decreasing-gain learning

setup. Overall, these results also allow us to illustrate the advantage of using Algorithm II

to estimate a BLE: the estimation under SAC-learning requires a relatively large burn-in

sample for the convergence of first-order autocorrelation coefficients. This might become

an issue if the researcher does not have a sufficiently long dataset, as is typical in most

quarterly macroeconomic time series. Furthermore, as we have already seen in Figure

4, the simulations under learning have a relatively large Monte-Carlo variance. In other

words, while the simulations converge to the underlying BLE on average, there might

be relatively large deviations from the underlying fixed-point for any given simulation.

Hence what comes out of the estimation in a real-time learning setup is similar to a single

simulation of the model under learning, which in general may not accurately reflect the

underlying fixed-point.

Posterior Results: CBO’s Measure of Output Gap

We repeat the estimation exercise for all three specifications under our measure of

output gap derived from CBO’s estimate of potential output37. This measure results

in a time series of output gap that is generally more volatile and has a smaller sample

average38. As a consequence, the estimated historical mean of output gap is lower across

all three specifications compared to the previous section. Under BLE and SAC-learning

specifications, the higher volatility of output gap is reflected in a smaller risk aversion

parameter 1
ϕ

(i.e. a larger feedback from the ex-ante real interest rate to output gap),

a smaller Phillips curve coefficient γ and a weaker policy reaction coefficient φy. Under

REE, γ is only marginally smaller and 1
ϕ

is actually slightly larger compared to the HP-

filtered measure. Instead, the higher volatility of output gap is reflected in a higher

persistence parameter ρy and a smaller reaction coefficient φy. The remaining parameter

estimates are similar to the previous section under all three specifications, which we do not

discuss in further detail. We also have similar results in terms of the model fit: the (log

marginal) likelihood of BLE and SAC-learning models are −341 and −342 respectively,

compared with −366 under REE. These yield Bayes’ Factors of 10.41 and 10.52 in favor

of BLE and SAC-learning models respectively. In this case, unlike the previous section,

the SAC-learning model yields a slightly better fit than the BLE model, but the difference

is negligible.

36Based on Jeffrey’s Guidelines, this provides very strong evidence in favor of BLE.
37See Appendix I for the exact definition of output gap measure used here.
38The HP-filter leads to more smoothing compared to CBO-based measure. Therefore downturns

generally have a larger impact under the CBO-based measure, which leads to a lower average and more
volatility in the resulting time series.
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The results presented in this section are generally robust across different subsamples,

as well as with our third measure of output gap based on de-trended output, see Appendix

H for more details. In the following, we analyze monetary policy under BLE.

4 Monetary Policy

Our results show that BLE and SAC-learning generally provide better model fits than

REE for the 3-equation New Keynesian model, with important differences in the estimated

structural parameters and the shock propagation under BLE and REE. This leaves an

important question for the transmission of monetary policy and how it differs under BLE

and REE. In this section, we investigate this issue from two different angles: we first

analyze over which parameter regions multiple BLE exist, and how monetary policy may

mitigate multiplicity of equilibria. We then consider optimal monetary policy under BLE

and REE based on an expected loss function. In both cases, we find important differences

in terms of monetary policy implications under BLE compared to REE. Particularly,

we find that plausible parameter regions with a unique REE may be characterized by

multiple E-stable BLE, and a monetary policy that is optimal under REE may perform

poorly under BLE.

4.1 Multiple Equilibria

Our analysis so far focuses on cases with a unique E-stable BLE. However, in general,

multiple E-stable BLE may coexist. In this section, we provide several examples of how

this phenomenon might occur, and how monetary policy might mitigate multiplicity of

equilibria. For this analysis, we use our parameter estimates at the posterior mode with

the CBO-based measure of output gap: even though the equilibrium is unique at the

posterior mode, we find that two E-stable BLE may coexist when there are small changes

in the monetary policy and some of the structural parameters. We do not observe this

multiplicity when considering the parameter estimates under the HP-filtered measure of

output gap, which will be discussed further below.

As a first example, Figure 7a shows the equilibrium persistence of inflation, β∗π as

a function of the inflation reaction parameter φπ. At the estimated reaction parameter

1.41, there is a unique E-stable equilibrium with β∗π ≈ 0.79 as discussed earlier. If we

decrease the reaction parameter, a second, high-persistence equilibrium becomes E-stable

around φπ = 1.36. There is a small range of values over [1.26, 1.36] for φπ where two E-

stable equilibria coexist, seperated by a third, E-unstable equilibrium39. The coexistence

39The plots in Figure 7 are obtained by using a grid search, where we specify a grid of length 20 over
the unit interval for the initial values of βπ and βy, and a grid of length 100 for each parameter under
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of two E-stable equilibria occurs with respect to not only φπ, but across a wide range

of parameters. The remaining panels in Figure 7 show three examples of this, where

we project the multiple equilibrium regions for inflation persistence under three different

pairs of parameter values40. Figure 7b shows the multiplicity region, i.e. the blue region,

for both policy reaction parameters φπ and φy over the ranges [1, 2.5] and [0.25, 0.5]

respectively: it is readily seen that the system remains in the low persistence region

as long as both parameters are sufficiently high. If either parameter becomes lower, the

system first enters the multiplicity region, where both low- and high-persistence equilibria

coexist. When the parameters are lowered further, the low-persistence equilibrium loses its

stability. This figure suggests that, in order to avoid the multiplicity and high-persistence

regions, a weaker reaction to one variable requires a more aggressive reaction to the other

variable. For example at φy = 0.4, an inflation reaction of φπ = 1.2 is sufficient to avoid

the multiplicity region, whereas at φy = 0.3, this value increases to φπ = 2.

Figure 7c shows the same analysis with respect to φπ and interest rate smoothing

ρr over the ranges [1, 3.5] and [0.8, 0.95]. We observe that, similar to the previous case,

different values of these two parameters give rise to regions with high- and low-persistence

BLE, separated by a multiplicity region where both equilibria coexist. This figure reveals

that interest rate smoothing is crucial in terms of driving the multiple equilibria results:

for values of ρr < 0.86, the system remains in the low-persistence equilibrium as long

as the Taylor principle of φπ > 1 is satisfied. For values of ρr > 0.91, it is not possible

to avoid the high-persistence region for any values of φπ. In fact, over this region with

high ρr, increasing φπ has the opposite of the desired effect and generates at least one

explosive BLE. As such, our analysis suggests that keeping the interest rate smoothing

parameter sufficiently small is more effective than the inflation reaction parameter in terms

of avoiding multiple equilibria. Finally, 7d illustrates how multiple equilibria may arise

with respect to other structural parameters of the system. For this exercise we use the

shock persistence parameters ρπ and ρy over the ranges [0, 0.4] and [0, 0.9] respectively. In

this case we also obtain the starting point of the multiple equilibrium region, i.e. the blue

region, which is near [0.31, 0.41]. For values of ρπ > 0.31, the system is characterized by

a unique E-stable equilibrium for all values of ρy. Values of ρπ < 0.31 divide the system

into three regions with the low- and high-persistence BLE, separated by the multiple

equilibrium region where both E-stable BLE coexist along with one E-unstable BLE.

This phenomenon is known as a cusp bifurcation: the boundaries of the blue region

consideration. Further, we use the quasi-Newton method to obtain the E-unstable equilibrium in Figure
7a since Algorithm I cannot converge to it by construction. The remaining panels are obtained by using
Algorithm I.

40For this exercise, the remaining parameters are fixed at their estimated posterior mode under the
CBO-based measure. Also note that the same analysis holds for output gap persistence, we only present
and discuss inflation persistence here due to space limitations.
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represent saddle-node bifurcation curves, where an additional E-stable BLE is created.

These saddle-node curves merge at a limiting curve to a cusp bifurcation (Kutnetsov, 2013

p.397).

The analysis above can be extended to other structural parameters of the model: for

example, the slope of the Phillips curve γ also plays a crucial role, where a higher param-

eter leads first to multiplicity and high-persistence regions, then to explosive equilibria

similar to interest rate smoothing. These cases are left to our Online Appendix. Further

note that, if we repeat the analysis in this section under our HP-filtered estimates, we

find no evidence of multiple equilibria in a nearby region. Given our results in this section

and our Online Appendix, the small differences in the estimates of γ ( lower under the

CBO-based measure) and ρr (higher under the CBO-based measure) emerge as the key

drivers of this result.

The important takeaway from this section is that, multiple E-stable BLE coexist in

plausible parameter regions even if the Taylor principle of φπ > 1 is satisfied. This is dif-

ferent than REE, where the Taylor principle ensures the equilibrium uniqueness. In these

multiple equilibrium regions, a sufficiently aggressive monetary policy can de-stabilize the

high-persistence BLE and ensure that the system remains in the low-persistence BLE. In

particular, an interest rate smoothing parameter ρr < 0.85 ensures that multiple E-stable

equilibria do not arise. When a low smoothing parameter is not feasible, sufficiently

aggressive reaction coefficients are able to achieve the same result.

For the remainder of this section, we turn to a comparison of optimal monetary policy

under BLE and REE, for which we use both our baseline calibration from Section 3.2, as

well as our baseline estimation with the HP-filtered output gap from Section 3.3. The key

result in both of these cases is that optimal policy under BLE typically looks different

than REE, even if we consider a parameter space with a unique E-stable BLE.
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Figure 7: Multiple BLE: the first panel (top left) shows a saddle-node bifurcation with
respect to φπ, where two stable BLE are separated by an unstable BLE over the region
[1.26, 1.36]. The remaining panels shows the projections of multiple equilibria over two-
dimensional parameter regions. The blue regions correspond to cases where we observe
two coexisting E-stable BLE, whereas the red regions correspond to cases with no E-stable
BLE. The red dots correspond to the estimated parameter values under CBO-based output
gap.

4.2 Optimal Policy

4.2.1 Calibrated Parameters

In this section we analyze optimal Taylor rules under BLE and REE. We start by

assuming that the central bank wishes to minimize an expected loss function E[L] in

terms of the discounted sum of weighted squared inflation, output gap and interest rate

E[L] = (1− ϑ)E
[
Σ∞t=0ϑ

t[ωππ
2
t + ωyy

2
t + ωrr

2
t ]
]

= ωπσ
2
π + ωyσ

2
y + ωrσ

2
r , (4.1)

where ωi, i ∈ {π, y, r} is the relative weight that the central bank places on inflation,

output gap and interest rate respectively. The stabilization objective for inflation and

output gap is a standard assumption in the literature, see e.g. Boehm and House (2014),
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Figure 8: Optimal policies at the BLE and at the REE. Parameters are: λ = 0.99, ϕ =
1, ρπ = ρy = 0.5, ρr = 0, γ = 0.04, σy = 1, σπ = 0.5 and ωy = 0.1, ωr = 0.05.

Evans and Honkapohja (2003) and Woodford (2003). The weight on interest rate variance

can be motivated by different interpretations: Woodford (1999) and Giannoni (2014)

suggest that it can proxy for welfare costs of transactions and/or an approximation on

the zero lower bound on nominal interest rates, while Caplin and Leahy (1996) suggest

that it can represent a gradual learning process for the central bank that is uncertain

about the consequences of interest rate fluctuations.

Based on our calculations and equations (F.12) and (F.13), the unconditional moments

under BLE are given as

σ2
y =

g̃1

(1 + γϕφπ + ϕφy)2(1− ρ2)(1− ρλ1)(1− ρλ2)(1− λ2
1)(1− λ2

2)(1− λ1λ2)
,(4.2)

σ2
π =

g̃2

(1 + γϕφπ + ϕφy)2(1− ρ2)(1− ρλ1)(1− ρλ2)(1− λ2
1)(1− λ2

2)(1− λ1λ2)
,(4.3)

σ2
r = φ2

yσ
2
y + φ2

πσ
2
π + 2φyφπE(ytπt), (4.4)

where g̃1, g̃2, λ1, λ2 are given by the equations (3.15)-(3.18), and E(ytπt) is a complicated

expression in terms of the structural parameters and first-order autocorrelations βy and

βπ
41.

In the following we study the optimal values (φ∗y, φ
∗
π) that minimize the central bank’s

loss function (4.1) under BLE and REE.

We first examine monetary policy under BLE and REE at our baseline calibration,

where we use the parameters λ = 0.99, ϕ = 1, γ = 0.04, ρy = ρπ = ρ = 0.5, ρr = 0, σπ =

0.5 and σy = 1 for both BLE and REE. Using this calibration serves two purposes:

first, using the same parameter values under both specifications ensures that the data

generating process only differs in terms of the expectation formation rule. Second, in

41See Appendix F, equation (F.16).
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Figure 9: Loss function along the optimal paths (φ∗y, φ
∗
π) in Figure 8 at the BLE (a) and

REE (b). Parameters are: λ = 0.99, ϕ = 1, , ρπ = ρy = ρ = 0.5, ρr = 0, γ = 0.04, σy =
1, σπ = 0.5 and ωy = 0.1, ωr = 0.05.

the absence of interest rate smoothing and given the assumption of ρπ = ρy, we can use

the expressions in (3.13)-(3.18) to evaluate BLE, which allows us to provide some insight

on how optimal monetary policy under BLE depends on model parameters, such as the

persistence of exogenous shocks.

As we saw in previous sections, there are important differences in the moments of

endogenous variables due to volatility and persistence amplification at BLE. In particular,

the implied variances of inflation, output gap and interest rate are different under BLE

and REE at the calibrated parameter values. Following Woodford (1999) and Giannoni

(2014), we normalize the weight on inflation to ωπ = 1. We first focus on a special case

with ωy = 0.1 and ωr = 0.05, that is, the central bank places a relatively large weight on

inflation and a small one on interest rates. The small weight on interest rates allows us to

first focus on the trade-off between inflation and output gap stabilization. We leave the

discussion of how optimal policy depends on these policy weights to the case of estimated

parameter values.

Interestingly, we find that the optimal Taylor rule coefficients (φ∗y, φ
∗
π) are finite under

BLE42. As shown in Figure 8, the corresponding optimal policy is (φ∗y, φ
∗
π) = (0.91, 4.88).

This is different from REE, where there is no finite optimal policy except when the weight

42We first select a policy parameter domain (e.g. [0, 100] × [1, 100]) and define a lattice with some
small step (e.g. 0.01). Then for each lattice point (φy, φπ), we find the BLE (β∗1(φy, φπ), β∗2(φy, φπ)) and
the corresponding central bank’s expected loss function E[L] at the BLE. Finally we interpolate the loss
function with respect to (φy, φπ) to find the finite optimal values. It is easy to get analytic expressions of
the variances and optimal policy parameters under REE. In contrast, it is impossible to obtain analytic
expressions of the optimal policy parameters under BLE and therefore we have to rely on numerical
approximations. We find consistent results using different ways to calculate the variances (i.e. based on
(4.2) and (4.3) or computing the variances as in Appendix B).
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to finite optimal policies) (b). Parameters are: λ = 0.99, ϕ = 1, γ = 0.04, σy = 1, σπ = 0.5
and ωy = 0.1, ωr = 0.05.

on interest rates is increased, or when measurement errors are considered as shown in

Boehm and House (2014)43. In fact, from Figure 8 it can be seen that in the case φ∗y

is small enough (i.e. < 0.91) the coefficients φ∗y and φ∗π lie on a manifold and the loss

function (4.1) decreases gradually along the manifold within this region, which is similar

to REE but with higher φ∗π. However, for φ∗y > 0.91, the loss function (4.1) starts to

increase, while in the REE the loss function (4.1) still decreases as shown in Figure 9. In

other words, there exist finite optimal Taylor rule coefficients at the BLE, but not at the

REE. This is mainly because at the BLE the actual law of motion has higher variance

than at the REE for the endogenous variables (especially inflation) and minimizing the

loss function, i.e. minimizing the weighted variances of output gap, inflation and interest

rate, requires balancing the different responses in terms of policy parameters (φy, φπ).

Next we investigate how optimal monetary policy changes as the persistence of the

underlying shocks is varied. At the REE with measurement error the finite coefficients

φ∗y and φ∗π increase as the persistence of shocks grows within some range, see Boehm

and House (2014). At the BLE, in addition to this, we find that when the persistence

of exogenous shocks becomes sufficiently small with ρ < 0.4, the finite coefficients φ∗y

and φ∗π increase in a small region as shown in Figure 10a, before they start decreasing

again. Furthermore, Figure 10b suggests that the optimal manifold always moves up as

the persistence of shocks ρ grows. The finite optimal policy lies at the point in the optimal

43The loss function considered in Boehm and House (2014) does not include interest rate variance.
Including interest rates in our loss function here does not affect the result that optimal policy at REE
does not exit as long as ωr remains sufficiently small. Optimal policy becomes finite when ωr is sufficiently
large, these cases are discussed under the estimated parameter values.
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manifold connecting the solid and dotted lines in Figure 10b. The location of the optimal

point corresponding to finite optimal policies depends on the relative values of variances

of inflation, output gap and interest rate. In the case where ρ is large enough, the loss

function is mainly dominated by the variance of inflation and hence the optimal policy

φ∗π grows quickly converging to ∞, and the slope of φ∗π
φ∗y

converging to a large constant.

As ρ becomes smaller, the variance of interest rate starts to play a more dominant role,

which leads to smaller values for both φ∗π and φ∗y. The region with small values of ρ is

more relevant for U.S. data since both shock persistence parameters are low at the BLE

in our estimation exercises.

These results show that optimal policy exists under BLE for this parameterization,

different than REE, and that the optimal rule (φ∗y, φ
∗
π) under BLE crucially depends on

the persistence of exogenous shocks.

4.2.2 Estimated Parameters

Next we examine optimal monetary policy for the empirically more relevant case of

estimated parameters. In this case the underlying structural parameters are different at

BLE and REE, but the variances of inflation, output gap and interest rate are close under

these two specifications. In particular, given the estimated parameter values and our

benchmark policy weights of (ωy, ωr) = (0.1, 0.05), the expected loss function E[L] is 0.57

at BLE and 0.55 at REE44. This allows us to compare monetary policy under BLE and

REE with a similar starting point for the loss function.

For this exercise, we limit our attention to Taylor parameters φy and φπ over the range

[0, 15]. In this case we find that optimal monetary policy exists not only at BLE, but also

at REE for a wide range of policy weights45. The difference at REE between calibrated

and estimated parameters is driven by the exogenous shocks, which are estimated to

be highly persistent, and the Phillips curve, which is estimated to be flatter compared

to the calibration. This introduces a larger trade-off between inflation and output gap

stabilization at REE, which leads to a finite optimal policy for a wide range of policy

weights. Given this result, we can compare how the optimal parameters differ at BLE

and REE.

Table 3 shows the optimal Taylor rules for several pairs of (ωy, ωr), along with some

key statistics at BLE and REE. The first two rows show our benchmark calibration of

44Our analysis with calibrated parameter values is based on the expressions (4.2)-(4.4). These expres-
sions are no longer applicable for the estimated version of the model since it also includes an interest
rate smoothing parameter, and the assumption of the same persistence for the exogenous shocks is re-
laxed. Rather, we use the (different) estimated shock persistence parameters. Therefore we proceed by
computing the BLE and the associated variances for each value of policy parameters using the Iterative
E-stability algorithm.

45See our Online Appendix for the optimal parameters at BLE and REE for weights ωy and ωr over
the range [0, 0.25].
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(0.1, 0.05), while the second row considers a calibration (0.048, 0.236) as in Woodford

(1999) and Giannoni (2014). The remaining two rows show the effects of increasing the

weight on output gap and interest rate relative to the benchmark calibration, where we

consider weights of (0.1, 0.15) and (0.2, 0.05) respectively. Several observations stand out

from the table: first, it is readily seen that optimal policy at BLE is typically more

aggressive in both parameters φ∗π and φ∗y, when the relative weight on interest rates is

large enough. To make this point more clear, Figure 11 shows the optimal parameters

at BLE and REE as a function of the relative weight on interest rates, ωr
ωy

. When ωr
ωy

approaches zero, optimal parameters under both BLE and REE quickly start converging

to infinity, whereas when ωr
ωy

increases, optimal parameters under both BLE and REE

decrease. φ∗y under BLE remains higher than REE across all combinations of weights,

suggesting a more aggressive response to output gap. φ∗π under BLE remains smaller

than REE until ωr
ωy
≈ 1.5, after which the optimal parameter under BLE always remains

larger than REE.

These results suggest that φ∗π under BLE is less sensitive to changes in the policy

weights, while φ∗y under BLE is more sensitive. In other words, optimal policy at REE

responds to changes in policy weights mainly through φ∗π, while optimal policy at BLE

responds to these changes through φ∗y. This result is mainly driven by the estimates of
1
ϕ

and γ, both of which are larger under BLE: a larger 1
ϕ

implies a stronger impact from

interest rates to output gap, while a larger γ implies a stronger impact from output gap

to inflation. As a consequence of this, stabilizing output gap plays a more dominant role

at BLE compared to REE, since the effect of this on inflation is also larger46. A side effect

of this stronger channel at BLE is on the loss function: the columns E[L∗] and ∆E[L∗]

show the value of the loss function at the optimal parameter values, and the percentage

improvement in the loss function compared to the benchmark value of the loss function.

It is readily seen that the improvements achieved under BLE are substantially larger

compared to REE, suggesting a stronger influence on the economy from interest rates.

This is in line with our earlier finding that impulse responses of inflation and output gap

to a monetary policy shock are larger under BLE.

As a final exercise, we consider optimal parameters when the interest rate smoothing

parameter is shut off, which serves two purposes: since the estimated value of interest rate

smoothing is different under BLE and REE, this allows us to compare optimal policies with

an equal rate of smoothing. Second, our results from multiple equilibria section suggest

that excessive interest rate smoothing is undesirable, since it may lead to multiple stable

BLE and even de-stabilize the economy. Here we check whether there are any benefits to

46For the cases where the Taylor rule of φπ > 1 is violated in Table 3, the REE model is still determinate
since the estimated Phillips curve slope is very small. Further, in all cases considered here, we have a
unique E-stable BLE since the interest rate smoothing parameter is not excessively large.
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interest rate smoothing at BLE in the absence of multiple equilibria.

In this case we find optimal parameters under both BLE and REE that are generally

smaller compared to the previous case, which is not surprising since shutting off ρr allows

for larger movements in interest rates, which in turn leads to smaller optimal parameters.

More importantly, this exercise reveals that, while interest rate smoothing is typically

welfare improving at REE, this is never the case at BLE: E[L∗] is uniformly smaller

and ∆E[L∗] uniformly larger at BLE when interest rate smoothing is shut off, while the

opposite holds at REE. The result for REE is well-known from Woodford (1999), where a

commitment to interest rate smoothing has a stabilizing effect with forward-looking agents

who anticipate and take into account future changes in interest rate. This is different

than a BLE with backward-looking agents, where such a commitment does not have a

stabilizing effect since agents are unaware of the commitment or do not take it into account

when forming their expectations. In other words, agents confuse a higher degree of interest

rate smoothing with weaker reactions coefficients in a BLE. An important implication of

this for a central bank is that, not communicating an interest rate smoothing objective

in a credible manner to the public may have welfare decreasing effects.

Overall, our results in this section yield important differences on the effects of monetary

policy under BLE and REE. In particular, we find that (i) multiple E-stable BLE may

coexist in plausible parameter regions typically associated with a unique REE, (ii) optimal

policy at BLE exist in parameter regions where there is no optimal policy at REE, (iii)

optimal parameters are typically different in regions where optimal policy exists for both

BLE and REE. These results imply that a monetary policy that is optimal under REE

may perform poorly under BLE.
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Figure 11: Changes in optimal parameters as a function of the relative weight on the
interest rate.
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ωπ ωy ωr BLE REE BLE REE
ρr = 0.85 ρr = 0.8 ρr = 0.85 ρr = 0.8

φ∗y φ∗π φ∗y φ∗π E[L∗] ∆E[L∗] E[L∗] ∆E[L∗]

1 0.1 0.05 3.94 3.49 2.74 4.43 0.24 58 % 0.40 27 %
1 0.048 0.236 1.67 1.56 0.94 0.75 0.34 32 % 0.55 1 %
1 0.1 0.15 2.42 1.82 1.25 1.96 0.32 48 % 0.52 15 %
1 0.2 0.05 6.67 3.94 2.64 8.51 0.28 68 % 0.41 46 %

ωπ ωy ωr BLE REE BLE REE
ρr = 0 ρr = 0 ρr = 0 ρr = 0

φ∗y φ∗π φ∗y φ∗π E[L∗] ∆E[L∗] E[L∗] ∆E[L∗]

1 0.1 0.05 1.21 1.67 2.17 4.91 0.24 59 % 0.43 21 %
1 0.048 0.236 0.46 0.91 0.38 0.49 0.30 40 % 0.64 -16 %
1 0.1 0.15 0.76 1.06 0.62 1.62 0.31 59 % 0.61 1 %
1 0.2 0.05 2.12 1.67 2.31 10.36 0.27 69 % 0.43 43 %

Table 3: Optimal Taylor rules and some key statistics at BLE and REE: top panel shows
the results under the estimated parameter values in each case, while the bottom panel
shows the same results without interest rate smoothing, i.e. ρr = 0. E[L∗] shows the loss
function value at the optimal policy, while ∆E[L∗] shows the percentage improvement at
the optimal policy relative to the loss function at the estimated parameters.

5 Concluding Remarks

We have generalized the Behavioral Learning Equilibria concept to an n-dimensional

linear stochastic framework and provided a general iterative method to approximate and

estimate BLE. We have applied our framework to the 3-equation New Keynesian model.

Boundedly rational agents use univariate AR(1) forecasting rules for output gap and in-

flation. A BLE is parameter free, as along the BLE the two parameters of each rule

are pinned down by two observable statistics: the unconditional mean and the first-order

autocorrelation. Hence, along a first-order approximation, the simple linear forecasting

rule is optimal within the class of AR(1) heuristics and consistent with observed re-

alizations. Agents gradually update the two coefficients –sample mean and first-order

autocorrelation– of their linear rule through sample autocorrelation learning. In the long

run, agents thus learn to coordinate on the best univariate linear forecasting rule for

each endogenous state variable, without fully recognizing the more complex structure of

the economy. In higher-dimensional systems, BLE exist under general conditions and we

provide simple stability conditions under learning. In the New Keynesian model without

interest rate smoothing, a BLE always exists when the Taylor Principle is satisfied.

A striking feature of BLE is the strong persistence amplification: the persistence of

output and inflation along a BLE is much higher, often near unit root, than the persis-

tence in the exogenous shocks driving the economy. Estimating the 3-equation model on

historical U.S. data under BLE yields a better model fit and a different shock propagation

compared with the REE model. This leaves an important role for monetary policy with
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the goal of stabilizing output gap, inflation and interest rates. Different from REE, we

find that multiple E-stable BLE may coexist in plausible parameter regions where the

Taylor principle is satisfied. We find a finite optimal Taylor rule under our benchmark

calibration, unlike REE where no finite policy exists. Furthermore, in parameter regions

where optimal policy exists under REE, we find that the optimal parameters are differ-

ent and typically less aggressive compared to BLE. These results suggest that a monetary

policy that is optimal under REE may perform poorly under BLE. In our follow-up paper,

Hommes et. al. (2019), we extend the estimation of BLE to the more realistic setup of the

medium-scale Smets-Wouters (2007) model, and also consider out-of-sample forecasting

under BLE.
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Appendix

A Mean of the rational expectations equilibrium

Using (2.10-2.11) and (2.15-2.18) the mean of the REE satisfies

x∗ = (III − ccc1)−1(ccc0 + ccc2uuu)

= (III − ccc1)−1(III − bbb1ccc1 − bbb1)−1(bbb0 + bbb1ccc2aaa) + (III − ccc1)−1ccc2(III − ρρρ)−1aaa

= (III − ccc1)−1(III − bbb1ccc1 − bbb1)−1[bbb0 + (bbb1ccc2(III − ρρρ) + (III − bbb1ccc1 − bbb1)ccc2)(III − ρρρ)−1aaa]

= [(III − bbb1ccc1 − bbb1)(III − ccc1)]−1[bbb0 + bbb3(III − ρρρ)−1aaa]

= (III − bbb1 − bbb2)−1[bbb0 + bbb3(III − ρρρ)−1aaa].

B Autocorrelation in the n-dimensional case

The purpose of this appendix is to show that the first-order autocorrelation coeffi-

cients of the stochastic stationary system (2.24) are continuous functions with respect to

(β1, β2, · · · , βn) and the other related parameters. Rewrite model (2.24) as{
xxxt − xxx = (bbb1βββ

2 + bbb2)(xxxt−1 − xxx) + bbb3(uuut − uuu) + bbb4vvvt,

uuut − uuu = ρρρ(uuut−1 − uuu) + εεεt.
(B.1)

That is, {
xxxt − xxx = (bbb1βββ

2 + bbb2)(xxxt−1 − xxx) + bbb3ρρρ(uuut−1 − uuu) + bbb3εεεt + bbb4vvvt,

uuut − uuu = ρρρ(uuut−1 − uuu) + εεεt.
(B.2)

ΓΓΓ(−1) = E[(xxxt − xxx)(xxxt−1 − xxx)′]

= E
[
(bbb1βββ

2 + bbb2)(xxxt−1 − xxx)(xxxt−1 − xxx)′ + bbb3ρρρ(uuut−1 − uuu)(xxxt−1 − xxx)′ + bbb3εεεt(xxxt−1 − xxx)′

+bbb4vvvt(xxxt−1 − xxx)′
]

= (bbb1βββ
2 + bbb2)ΓΓΓ(0) + bbb3ρρρE[(uuut−1 − uuu)(xxxt−1 − xxx)′]

= (bbb1βββ
2 + bbb2)ΓΓΓ(0) + bbb3ρρρE[(uuut − uuu)(xxxt − xxx)′]. (B.3)
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ΓΓΓ(0) = E[(xxxt − xxx)(xxxt − xxx)′]

= E
[
(bbb1βββ

2 + bbb2)(xxxt−1 − xxx)(xxxt − xxx)′ + bbb3ρρρ(uuut−1 − uuu)(xxxt − xxx)′ + bbb3εεεt(xxxt − xxx)′ + bbb4vvvt(xxxt − xxx)′
]

= (bbb1βββ
2 + bbb2)ΓΓΓ(1) + bbb3ρρρE[(uuut−1 − uuu)(xxxt − xxx)′] + bbb3E[εεεt(xxxt − xxx)′] + bbb4E[vvvt(xxxt − xxx)′]

= (bbb1βββ
2 + bbb2)ΓΓΓ(1) + bbb3ρρρE[(uuut−1 − uuu)(xxxt − xxx)′] + bbb3ΣΣΣεεεbbb

′
3 + bbb4ΣΣΣvvvbbb

′
4. (B.4)

Note that E[εεεt(xxxt − xxx)′] = E
[
εεεt((bbb1βββ

2 + bbb2)(xxxt−1 − xxx))′ + εεεt(bbb3ρρρ(uuut−1 − uuu))′ + εεεt(bbb3εεεt)
′ +

εεεt(bbb4vvvt)
′
]

= ΣΣΣεεεbbb
′
3 and E[vvvt(xxxt − xxx)′] = E

[
vvvt((bbb1βββ

2 + bbb2)(xxxt−1 − xxx))′ + vvvt(bbb3ρρρ(uuut−1 − uuu))′ +

vvvt(bbb3εεεt)
′ + vvvt(bbb4vvvt)

′
]

= ΣΣΣvvvbbb
′
4.

Based on (B.3), (B.4) and ΓΓΓ(−1) = ΓΓΓ(1)′,

ΓΓΓ(0) = (bbb1βββ
2 + bbb2)ΓΓΓ(0)(bbb1βββ

2 + bbb2)′ + (bbb1βββ
2 + bbb2)E[(xxxt − xxx)(uuut − uuu)′](bbb3ρρρ)′

+bbb3ρρρE[(uuut−1 − uuu)(xxxt − xxx)′] + bbb3ΣΣΣεεεbbb
′
3 + bbb4ΣΣΣvvvbbb

′
4.

In order to obtain the expression of ΓΓΓ(0), we use column stacks of matrices. Suppose

vec(KKK) is the vectorization of a matrix KKK and ⊗ is the Kronecker product47. Under the

assumption that all the eigenvalues of bbb1βββ
2 are inside the unit circle, based on the property

of Kronecker product48, it is easy to see all the eigenvalues of (bbb1βββ
2 + bbb2)⊗ (bbb1βββ

2 + bbb2) lie

inside the unit circle and hence [III − (bbb1βββ
2 + bbb2)⊗ (bbb1βββ

2 + bbb2)]−1 exist. Therefore,

vec(ΓΓΓ(0)) = [III − (bbb1βββ
2 + bbb2)⊗ (bbb1βββ

2 + bbb2)]−1[((bbb3ρρρ)⊗ (bbb1βββ
2 + bbb2))vec(E[(xxxt − xxx)(uuut − uuu)′])

+(III ⊗ (bbb3ρρρ))vec(E[(uuut−1 − uuu)(xxxt − xxx)′]) + vec(bbb3ΣΣΣεεεbbb
′
3 + bbb4ΣΣΣvvvbbb

′
4)]. (B.5)

Thus in order to obtain ΓΓΓ(1) and ΓΓΓ(0), we need calculate E[(xxxt−xxx)(uuut−uuu)′] and E[(uuut−1−
uuu)(xxxt − xxx)′].

E[(xxxt − xxx)(uuut − uuu)′]

= E
[
(bbb1βββ

2 + bbb2)(xxxt−1 − xxx)(uuut − uuu)′ + bbb3ρρρ(uuut−1 − uuu)(uuut − uuu)′ + bbb3εεεt(uuut − uuu)′ + bbb4vvvt(uuut − uuu)′
]

= E
[
(bbb1βββ

2 + bbb2)(xxxt−1 − xxx)[(uuut−1 − uuu)′ρρρ′ + εεε′t] + bbb3ρρρ(uuut−1 − uuu)[(uuut−1 − uuu)′ρρρ′ + εεε′t]

+bbb3εεεt[(uuut−1 − uuu)′ρρρ′ + εεε′t] + vvvt[(uuut−1 − uuu)′ρρρ′ + εεε′t]
]

= (bbb1βββ
2 + bbb2)E[(xxxt−1 − xxx)(uuut−1 − uuu)′]ρρρ′ + bbb3ρρρE[(uuut − uuu)(uuut − uuu)′]ρρρ′ + bbb3ΣΣΣε.

47One property of column stacks is that the column stack of a product of three matrices is vec(ABC) =
(C ′⊗A)vec(B). For more details on this and related properties, see Magnus and Neudecker(1988, Chapter
2) and Evans and Honkapohja (2001, Section 5.7).

48The eigenvalues of Â⊗ B̂ are the mn numbers λrµs, r = 1, 2, · · · ,m, s = 1, 2, · · · , n where λ1, · · · , λm
are the eigenvalues of m×m matrix Â and µ1, · · · , µn are the eigenvalues of n×n matrix B̂; see Lancaster
and Tismenetsky (1985).
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Correspondingly,

vec(E[(xxxt − xxx)(uuut − uuu)′])

= [III − ρρρ⊗ (bbb1βββ
2 + bbb2)]−1[vec(bbb3ρρρE[(uuut − uuu)(uuut − uuu)′]ρρρ′) + vec(bbb3ΣΣΣε)]

= [III − ρρρ⊗ (bbb1βββ
2 + bbb2)]−1[(ρρρ⊗ (bbb3ρρρ))vec(E[(uuut − uuu)(uuut − uuu)′]) + (III ⊗ bbb3)vecΣΣΣε)]

= [III − ρρρ⊗ (bbb1βββ
2 + bbb2)]−1[(ρρρ⊗ (bbb3ρρρ))[III − ρρρ⊗ ρρρ]−1 + (III ⊗ bbb3)]vec(ΣΣΣε). (B.6)

Furthermore,

E[(xxxt − xxx)(uuut−1 − uuu)′]

= E
[
(bbb1βββ

2 + bbb2)(xxxt−1 − xxx)(uuut−1 − uuu)′ + bbb3ρρρ(uuut−1 − uuu)(uuut−1 − uuu)′ + bbb3εεεt(uuut−1 − uuu)′ + bbb4vvvt(uuut−1 − uuu)′
]

= (bbb1βββ
2 + bbb2)E[(xxxt − xxx)(uuut − uuu)′] + bbb3ρρρE[(uuut − uuu)(uuut − uuu)′].

Thus based on (B.6),

vec(E[(xxxt − xxx)(uuut−1 − uuu)′])

= (III ⊗ (bbb1βββ
2 + bbb2))vec(E[(xxxt − xxx)(uuut − uuu)′]) + (III ⊗ (bbb3ρρρ))vec(E[(uuut − uuu)(uuut − uuu)′])

= (III ⊗ (bbb1βββ
2 + bbb2))[III − ρρρ⊗ (bbb1βββ

2 + bbb2)]−1[(ρρρ⊗ (bbb3ρρρ))[III − ρρρ⊗ ρρρ]−1 + (III ⊗ bbb3)]vec(ΣΣΣε)

+(III ⊗ (bbb3ρρρ))[III − ρρρ⊗ ρρρ]−1vec(ΣΣΣε). (B.7)

Therefore based on (B.7), the expression of matrix E[(xxxt−xxx)(uuut−1−uuu)′ can be obtained.

Then by transposing the matrix E[(xxxt−xxx)(uuut−1−uuu)′, we obtain vec(E[(uuut−1−uuu)(xxxt−xxx)′]).

Furthermore, combining this with (B.6), we obtain the variance-covariance matrix ΓΓΓ(0)

from (B.5) and ΓΓΓ(1) from (B.3). Based on the properties of matrix operations, it is easy

to see that the entries of matrices ΓΓΓ(0) and ΓΓΓ(1) are continuous functions with respect

to (β1, β3, · · · , βn) and the other related parameters. Thus the first-order autocorrelation

coefficients of the nontrivial stochastic stationary system (2.24) are continuous functions

with respect to (β1, β3, · · · , βn) and the other related parameters.

Zero-mean Special Case

Taking (2.32) as the starting point and assuming γ̄ = 000, we have

St = γ1St−1 + γ2βββ
2St−1 + γ3ηt (B.8)

The first-order covariance matrix is given by:

ΓΓΓ(1) = E[StS
′
t−1] = (γ1 + γ2βββ

2)E[St−1S
′
t−1] + γ3E[ηtS

′
t−1]. (B.9)

52



We have E[ηtS
′
t−1] = 0, while E[ηt−1S

′
t−1] = E[ηt−1((γ1 + γ2βββ

2)St−2 + γ3ηt−1)′] = (γ3ΣηΣηΣη)
′.

Further denoting (γ1 + γ2βββ
2) = M(βββ), the expression in (B.9) reduces to:

ΓΓΓ(1) = M(βββ)ΓΓΓ(0), (B.10)

with ΓΓΓ(0) the variance-covariance matrix. Taking the variance on both sides of (B.8)

yields:

ΓΓΓ(0) = M(βββ)ΓΓΓ(0)M(βββ)′ + γ3ΣηΣηΣηγ
′
3. (B.11)

Vectorizing both sides and using V ec(ABC) = (C ′ ⊗ A)V ec(B), the expression above

reduces to:

V ec(ΓΓΓ(0)) = (M(βββ)⊗M(βββ))V ec(ΓΓΓ(0)) + (γ3 ⊗ γ3)V ec(ΣηΣηΣη). (B.12)

Hence

V ec(ΓΓΓ(0)) = [I −M(βββ)⊗M(βββ)]−1(γ3 ⊗ γ3)V ec(ΣηΣηΣη), (B.13)

which yields (2.33).

C Proof of Proposition 2 (stability of SAC-learning

under SAC-learning)

This appendix derives the E-stability conditions for a BLE (ααα∗,βββ∗). Set γt = (1+t)−1.

For the learning dynamics in (2.28) and (2.8)49, since all functions are smooth, the SAC-

learning rule satisfies the conditions (A.1-A.3) of Section 6.2.1 in Evans and Honkapohja

(2001, p.124).

In order to check the conditions (B.1-B.2) of Section 6.2.1 in Evans and Honkapohja

(2001, p.125), we rewrite the system in matrix form by

XXX t = ÃAA(θθθt−1)XXX t−1 + B̃BB(θθθt−1)WWW t,

where θθθ′t = (αααt,βββt,RRRt),XXX
′
t = (1,xxx′t,xxx

′
t−1,uuu

′
t) and WWW ′

t = (1, vvv′t, εεε
′
t),

ÃAA(θθθ) =


0 0 0 0

b0 + b1(I − β2)α + b2ab0 + b1(I − β2)α + b2ab0 + b1(I − β2)α + b2a b1βb1βb1β
2 0 b2ρb2ρb2ρ

0 I 0 0

a 0 0 ρρρ

 ,

49For convenience of theoretical analysis, one can set St−1 = Rt.
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B̃BB(θθθ) =


1 0 0

0 I b2

0 0 0

0 0 I

 .

Based on the properties of eigenvalues, see e.g. Evans and Honkapohja (2001, p.117), all

the eigenvalues of ÃAA(θθθ) include 0 (multiple n + 1), the eigenvalues of ρρρ and b1βb1βb1β
2. Thus

based on the assumptions, all the eigenvalues of ÃAA(θθθ) lie inside the unit circle. Moreover,

it is easy to see all the other conditions for Section 6.2.1 of Chapter 6 in Evans and

Honkapohja (2001) are also satisfied.

Since xxxt is stationary, then the limits

σ2
i := lim

t→∞
E(xi,t − αi)2, σ2

xixi,−1
:= lim

t→∞
E(xi,t − αi)(xi,t−1 − αi)

exist and are finite. Hence according to Section 6.2.1 of Chapter 6 in Evans and Honkapo-

hja (2001, p.126), the associated ODE is

dααα

dτ
= xxx(ααα,βββ)−ααα,

dβββ

dτ
= RRR−1[EEE − βΩβΩβΩ] = RRR−1ΩΩΩ[EEEΩΩΩ−1 − βββ],

dRRR

dτ
= ΩΩΩ−RRR,

(C.1)

where RRR is a diagonal matrix with the i-th diagonal entry Ri and ΩΩΩ, EEE are also diagonal

matrices as defined in Section 2. As shown in Evans and Honkapohja (2001), a BLE

corresponds to a fixed point of the following ODE (C.2).
dααα

dτ
= xxx(ααα,βββ)−ααα,

dβββ

dτ
= GGG− βββ.

(C.2)

Note that βββ and GGG are both diagonal matrices. The Jacobian matrix of C.2 is, in fact,

equivalent to (
(III − bbb1βββ

∗2)−1(bbb1 − III) %%%

000 DDDGGGβββ(βββ∗)− III

)
,

where DDDGGGβββ is a Jacobian matrix with the (i, j)-th entry ∂Gi
∂βj

and the form of matrix

%%% is omitted since it is not needed in the proof. Therefore, if all the eigenvalues of

(III − bbb1βββ
∗2)−1(bbb1 − III) have negative real parts, and all the eigenvalues of DDDGGGβββ(βββ∗) have

real parts less than 1, the SAC-learning (αααt,βββt) converges to the BLE (ααα∗,βββ∗) as time t

tends to ∞.
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D Local Stability Conditions and Kalman Filter with

SAC-learning

Local Stability of Quasi-Newton Iteration

This section studies the convergence of the Quasi-Newton iteration in (2.36). In par-

ticular, we show that the condition ρ(DGβββ(βββ∗)) < 1 is not necessary for local stability.

Note that the iteration is given as

β(k+1)β(k+1)β(k+1) = β(k)β(k)β(k) −DFβββ(β(k)β(k)β(k), θ)−1F (β(k)β(k)β(k), θ), (D.1)

with F (β(k)β(k)β(k), θ) = G(β(k)β(k)β(k), θ) − β(k)β(k)β(k). Defining50 H(βββ) = βββ − DFβββ(βββ)−1F (βββ), we need to

show that H(βββ) is locally stable. Note that:

DHβββ(βββ) = DFβββ(βββ)−2D2
βββF (βββ)F (βββ),

with DFβββ(βββ) = DGβββ(βββ)− I and D2
βββF (βββ) = D2

βββG(βββ), which implies

DHβββ(βββ) = (DβββG(βββ)− I)−2D2
βββG(βββ)(G(βββ)− βββ).

Since βββ∗ = G(βββ∗) at a BLE by definition, it follows that ρ(DHβββ(β∗β∗β∗)) < 1. Hence (D.1) is

locally stable at any BLE βββ∗ and one can find a neighbourhood D̂ around βββ∗ such that:

limk→∞H
k(β(0)β(0)β(0)) = β∗β∗β∗,∀β(0)β(0)β(0) ∈ D̂. (D.2)

Importantly, this result holds for all E-stable and E-unstable BLE. Therefore the Quasi-

Newton iteration may converge to E-unstable fixed-points.

Local Stability of Algorithm II

This section derives the local stability condition for Algorithm II. We first re-write the

maximization problem to derive the local stability condition. Let (000,β∗β∗β∗) be an iteratively

E-stable fixed-point at the estimated parameter values θ̂∗. Then the belief parameters β∗β∗β∗

and the structural parameters θ̂∗ satisfy the following conditions:β
∗β∗β∗ = G(β∗β∗β∗, θ∗)

θ∗ = argmax
θ

p(θ|Y1:T ,β
∗β∗β∗).

(D.3)

50For the remainder, we omit the dependence of G(β, θ) on the structural parameters θ for ease of
notation.
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Since the dataset Y1:T remains fixed at each step of the iteration, the second condition

can be written as:

θ∗ = argmax
θ

p(θ|Y1:T ,β
∗β∗β∗) = pm(β∗β∗β∗), (D.4)

for some pm(.). This implies that the estimated structural parameters θ∗ are given as a

function of the equilibrium belief parameters β∗β∗β∗ for a given dataset and likelihood function.

Plugging this back into the first condition yields:

β∗β∗β∗ = G(β∗β∗β∗, pm(β∗β∗β∗)). (D.5)

(D.5) has the same functional form as the fixed-point iteration in (2.35). In this case the

Jacobian matrix at the equilibrium β∗β∗β∗ and θ∗ is given by

DGβββ(β∗β∗β∗) =
∂G

∂βββ |β∗β∗β∗,θ∗
+
∂G

∂θ∗
∂θ∗

∂βββ |β∗β∗β∗,θ∗
. (D.6)

Note that the first component in (D.6) corresponds to the Jacobian matrix of G(βββ) in

the case with fixed parameters, while the second component appears due to the fact

that the structural parameters also depend on β∗β∗β∗. Further note that, all three partial

derivatives that appear in (D.6) can be numerically evaluated. If the eigenvalue condition

ρ(DG(β∗β∗β∗)) < 1 is satisfied, it follows that β∗β∗β∗ = G(β∗β∗β∗, θ∗) is locally stable under (2.40)

and (2.41).

Kalman Filter with SAC learning

This section describes the Kalman filter algorithm used in the SAC-learning estima-

tions in Section 3.3. The main filter block follows standard steps, and we use the filter

output at the end of each iteration to update the belief parameters. Consider the law of

motion (2.32), which can be rewritten as

St = γ̃t + (γ1 + γ2β
2
t )St−1 + γ3ηt, (D.7)

where γ̃t = γ̄+ γ2(αt +β2
t αt). Denote by S0|0, P0|0,ααα0,βββ0,RRR0 the initial state vector, state

covariance matrix, initial belief parameters and their initial covariance matrix respectively.

Denoting by L, N and T the number of shocks, forward-looking variables and length of

the dataset respectively, the recursion is given as follows:
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For t = 1 : T

St|t−1 = γ̃t−1 + (γ1 + γ2β
2
t−1)St−1|t−1,

Pt|t−1 = (γ1 + γ2β
2
t−1)Pt−1|t−1(γ1 + γ2β

2
t−1)′ + γ3Σηγ

′
3,

vt = Yt − φ0 − φ1St|t−1,

Σt = φ1Pt|t−1φ
′
1,

St|t = St|t−1 + Pt|t−1φ
′
1Σ−1

t vt,

Pt|t = Pt|t−1φ
′
1Σ−1

t φ1Pt|t−1,

p(yt|αt−1, βt−1) = −L
2
ln(2π)− 1

2
ln|Σt| − 1

2
(v′tΣ

−1
t vt)

For i = 1 : N

αi,t = αi,t−1 + 1
t+1

(xi,t − αi,t−1),

βi,t = βi,t−1 + 1
t+1
R−1
i,t

[
(xi,t − αi,t−1)

(
xi,t−1 +

xi,0
t+1
− t2+3t+1

(t+1)2
αi,t−1 − 1

(t+1)2
xi,t
)

− t
t+1
βi,t−1(xi,t − αi,t−1)2

]
,

Ri,t = Ri,t−1 + 1
t+1

[
t
t+1

(xi,t − αi,t−1)2 −Ri,t−1

]
.

End

End

(D.8)

The resulting likelihood function is combined with the prior distributions to obtain

the posterior distribution that is estimated.

E Eigenvalues of matrix BBBβββ2

This appendix shows the sufficiency condition for the existence of BLE in Corollary

2. The characteristic polynomial of Bβββ2 is given by h(ν) = ν2 + c1ν + c2, where

c1 = −
β2
y + [γϕ+ λ(1 + ϕφy)]β

2
π

1 + γϕφπ + ϕφy
, c2 =

λβ2
yβ

2
π

1 + γϕφπ + ϕφy
.

Both of the eigenvalues of Bβββ2 are inside the unit circle if and only if both of the following

conditions hold (see Elaydi, 1999):

h(1) > 0, h(−1) > 0, |h(0)| < 1.
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It is easy to see h(−1) > 0, |h(0)| < 1 for any βi ∈ [−1, 1]. Note that

h(1) =
(1− β2

y)(1− λβ2
π) + γϕφπ + ϕφy − (γϕ+ λϕφy)β

2
π

1 + γϕφπ + ϕφy
,

≥ ϕ[γ(φπ − 1) + (1− λ)φy]

1 + γϕφπ + ϕφy
.

Thus if γ(φπ − 1) + (1− λ)φy > 0, then h(1) > 0. Therefore, both eigenvalues of Bβββ2 lie

inside the unit circle for all βi ∈ [−1, 1].

F First-order autocorrelation coefficients of output

gap and inflation

This appendix derives the first-order autocorrelation coefficients for output gap and

inflation in the New-Keynesian model. Define zzzt = xxxt−x̄. Then in order to obtainGGG(ααα,βββ),

we first calculate EEE(ztz
′
t−1) and EEE(ztz

′
t). Rewrite model (3.12) into its VARMA(1,∞)

representation

zzzt = BβBβBβ2zt−1 +CCC
∞∑
n=0

ρnεεεt−n. (F.1)

Since both eigenvalues of BβBβBβ2 lie inside the unit circle under the assumption γ(φπ − 1) +

(1− λ)φy > 0 (see Appendix E), then

zzzt = C[ρI−C−1BβBβBβ2C]−1

∞∑
n=0

[ρn+1I−C−1(BβBβBβ2)n+1C]εεεt−n.

Note ρ is a scalar number and III is a 2× 2 identity matrix. Based on i.i.d. assumption of

εεεt,

EEEztzzz
′
t = C[ρI−C−1BβBβBβ2C]−1

∞∑
n=0

[ρn+1I−C−1(BβBβBβ2)n+1C]ΣΣΣ[ρn+1I− (C−1(BβBβBβ2)n+1C)′] ·

[ρI− (C−1BβBβBβ2C)′]−1C′, (F.2)

where ΣΣΣ =

[
σ2

1 0

0 σ2
2

]
.

In the following we try to obtain the expression of the matrix EEEztzzz
′
t and hence we

first calculate the matrix
∑∞

n=0[ρn+1I−C−1(BβBβBβ2)n+1C]ΣΣΣ[ρn+1I− (C−1(BβBβBβ2)n+1C)′] and

C−1(BβBβBβ2)n+1C.
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Note that

BβBβBβ2 =
1

1 + γϕφπ + ϕφy

[
β2
y ϕ(1− λφπ)β2

π

γβ2
y (γϕ+ λ(1 + ϕφy))β

2
π

]
.

BβBβBβ2 has two eigenvalues51

λ1 =
[β2
y + (γϕ+ λ+ λϕφy)β

2
π] +

√
[β2
y + (γϕ+ λ+ λϕφy)β2

π]2 − 4λβ2
yβ

2
π(1 + γϕφπ + ϕφy)

2(1 + γϕφπ + ϕφy)
,

λ2 =
[β2
y + (γϕ+ λ+ λϕφy)β

2
π]−

√
[β2
y + (γϕ+ λ+ λϕφy)β2

π]2 − 4λβ2
yβ

2
π(1 + γϕφπ + ϕφy)

2(1 + γϕφπ + ϕφy)
.

Their corresponding eigenvectors are

P1 =
[ ϕ(1− λφπ)β2

π

1 + γϕφπ + ϕφy
, λ1 −

β2
y

1 + γϕφπ + ϕφy

]′
,

P2 =
[ ϕ(1− λφπ)β2

π

1 + γϕφπ + ϕφy
, λ2 −

β2
y

1 + γϕφπ + ϕφy

]′
.

Let PPP = [P1, P2]. Then

C−1Bβ2CC−1Bβ2CC−1Bβ2C = C−1PC−1PC−1P

[
λ1 0

0 λ2

]
(((C
−1
PPP )−1,

where

C−1PC−1PC−1P

=

 (1+ϕφy)ϕ(1−λφπ)β2
π

1+γϕφπ+ϕφy
+ ϕφπ

(
λ1 −

β2
y

1+γϕφπ+ϕφy

)
(1+ϕφy)ϕ(1−λφπ)β2

π

1+γϕφπ+ϕφy
+ ϕφπ

(
λ2 −

β2
y

1+γϕφπ+ϕφy

)
−γϕ(1−λφπ)β2

π

1+γϕφπ+ϕφy
+
(
λ1 −

β2
y

1+γϕφπ+ϕφy

)
−γϕ(1−λφπ)β2

π

1+γϕφπ+ϕφy
+
(
λ2 −

β2
y

1+γϕφπ+ϕφy

) 
=:

[
d1 d2

d3 d4

]
.

Correspondingly

(((C
−1
PPP )−1 =

1

d1d4 − d2d3

[
d4 −d2

−d3 d1

]
,

51In the special case λ1 = λ2, although BβBβBβ2 is not diagonalizable, the expressions of first-order auto-
correlations (3.13) and (3.14) still hold based on the Jordan normal form of matrix BβBβBβ2. Without loss
of generality, in the following we assume λ1 6= λ2.

59



where

d1d4 − d2d3 = det(CCC−1P ) = ϕ(1− λφπ)β2
π(λ2 − λ1).

Hence

C−1(Bβ2)n+1CC−1(Bβ2)n+1CC−1(Bβ2)n+1C = C−1PC−1PC−1P

[
λn+1

1 0

0 λn+1
2

]
(C−1P )−1(C−1P )−1(C−1P )−1

=
1

d1d4 − d2d3

[
d1d4λ

n+1
1 − d2d3λ

n+1
2 d1d2(λn+1

2 − λn+1
1 )

d3d4(λn+1
1 − λn+1

2 ) d1d4λ
n+1
2 − d2d3λ

n+1
1

]
.

Thus

ρn+1I − C−1(Bβ2)n+1Cρn+1I − C−1(Bβ2)n+1Cρn+1I − C−1(Bβ2)n+1C =

1

d1d4 − d2d3

[
d1d4(ρn+1 − λn+1

1 )− d2d3(ρn+1 − λn+1
2 ) −d1d2(λn+1

2 − λn+1
1 )

−d3d4(λn+1
1 − λn+1

2 ) d1d4(ρn+1 − λn+1
2 )− d2d3(ρn+1 − λn+1

1 )

]
.

Therefore

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′][ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′][ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′] =
1

(d1d4 − d2d3)2

[
s1(n+ 1) s2(n+ 1)

s2(n+ 1) s3(n+ 1)

]
,

where

s1(n+ 1) = σ2
1[d1d4(ρn+1 − λn+1

1 )− d2d3(ρn+1 − λn+1
2 )]2 + σ2

2[d1d2(λn+1
2 − λn+1

1 )]2,

s2(n+ 1) = σ2
1d3d4(λn+1

2 − λn+1
1 )[d1d4(ρn+1 − λn+1

1 )− d2d3(ρn+1 − λn+1
2 )] +

σ2
2d1d2(λn+1

1 − λn+1
2 )[d1d4(ρn+1 − λn+1

2 )− d2d3(ρn+1 − λn+1
1 )],

s3(n+ 1) = σ2
1[d3d4(λn+1

2 − λn+1
1 )]2 + σ2

2[d1d4(ρn+1 − λn+1
2 )− d2d3(ρn+1 − λn+1

1 )]2.

Correspondingly it is natural to have

∞∑
n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

∞∑
n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]
∞∑
n=0

[ρn+1I − C−1(Bβ2)n+1C]Σ[ρn+1I − (C−1(Bβ2)n+1C)′]

=
1

(d1d4 − d2d3)2

[ ∑∞
n=0 s1(n+ 1)

∑∞
n=0 s2(n+ 1)∑∞

n=0 s2(n+ 1)
∑∞

n=0 s3(n+ 1)

]

=
1

(d1d4 − d2d3)2

[
s∗1 s∗2

s∗2 s∗3

]
, (F.3)
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where

s∗1 = σ2
1

[
(d1d4 − d2d3)2 1

1− ρ2
− 2d1d4(d1d4 − d2d3)

1

1− ρλ1

+ (d1d4)2 1

1− λ2
1

+2d2d3(d1d4 − d2d3)
1

1− ρλ2

− 2d1d2d3d4
1

1− λ1λ2

+ (d2d3)2 1

1− λ2
2

]
+σ2

2

[
(d1d2)2

( 1

1− λ2
2

− 2

1− λ1λ2

+
1

1− λ2
1

)]
, (F.4)

s∗2 = σ2
1

[
d3d4

{
(d1d4 − d2d3)

( 1

1− ρλ2

− 1

1− ρλ1

)
+

d1d4

1− λ2
1

− d1d4 + d2d3

1− λ1λ2

+
d2d3

1− λ2
2

}]
+ σ2

2 ·[
d1d2

{
(d1d4 − d2d3)

( 1

1− ρλ1

− 1

1− ρλ2

)
+

d1d4

1− λ2
2

− d1d4 + d2d3

1− λ1λ2

+
d2d3

1− λ2
1

}]
, (F.5)

s∗3 = σ2
1

[
(d3d4)2

( 1

1− λ2
2

− 2

1− λ1λ2

+
1

1− λ2
1

)]
+σ2

2

[
(d1d4 − d2d3)2 1

1− ρ2
− 2d1d4(d1d4 − d2d3)

1

1− ρλ2

+ (d1d4)2 1

1− λ2
2

+2d2d3(d1d4 − d2d3)
1

1− ρλ1

− 2d1d2d3d4
1

1− λ1λ2

+ (d2d3)2 1

1− λ2
1

]
. (F.6)

Therefore based on (F.2) and (F.3), we can further obtain the expression of EEEztzzz
′
t.

Note that

[ρI − C−1(Bβ2)C]−1[ρI − C−1(Bβ2)C]−1[ρI − C−1(Bβ2)C]−1 =
1

m̃

[
d1d4(ρ− λ2)− d2d3(ρ− λ1) d1d2(λ2 − λ1)

d3d4(λ1 − λ2) d1d4(ρ− λ1)− d2d3(ρ− λ2)

]
,

where m̃ = (d1d4 − d2d3)(ρ− λ1)(ρ− λ2), and

C[ρI − C−1(Bβ2)C]−1C[ρI − C−1(Bβ2)C]−1C[ρI − C−1(Bβ2)C]−1 =
1

m̃(1 + γϕφπ + ϕφy)

[
k1 k2

k3 k4

]
,

where

k1 = d1d4(ρ− λ2)− d2d3(ρ− λ1)− ϕφπd3d4(λ1 − λ2), (F.7)

k2 = d1d2(λ2 − λ1)− ϕφπ[d1d4(ρ− λ1)− d2d3(ρ− λ2)], (F.8)

k3 = γ[d1d4(ρ− λ2)− d2d3(ρ− λ1)] + (1 + ϕφy)d3d4(λ1 − λ2), (F.9)

k4 = γd1d2(λ2 − λ1) + (1 + ϕφy)[d1d4(ρ− λ1)− d2d3(ρ− λ2)]. (F.10)

Thus we have

EEEztzzz
′
t = k̃ ·[

k2
1s
∗
1 + 2k1k2s

∗
2 + k2

2s
∗
3 k1k3s

∗
1 + (k1k4 + k2k3)s∗2 + k2k4s

∗
3

k1k3s
∗
1 + (k1k4 + k2k3)s∗2 + k2k4s

∗
3 k2

3s
∗
1 + 2k3k4s

∗
2 + k2

4s
∗
3

]
(F.11)
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where k̃ = 1
(1+γϕφπ+ϕφy)2(d1d4−d2d3)4(ρ−λ1)2(ρ−λ2)2

, s∗i is given in (F.4)-(F.6) and ki is given

in (F.7)-(F.10).

Through complicated calculations52, the variances of output gap and inflations can be

further simplified as

E(y2
t ) =

1

k̃
(k2

1s
∗
1 + 2k1k2s

∗
2 + k2

2s
∗
3)

=
1

(1 + γϕφπ + ϕφy)2(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2){
σ2

1

[
[(1 + λ2β4

π)− 2λβ2
π(ρ+ λ1 + λ2) + (1 + λ2β4

π)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
π)(ρ+ λ1 + λ2)− 2λβ2

π(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
π)ρλ1λ2]

]
+σ2

2

[
[((ϕφπ)2 + ϕ2β4

π)− 2ϕφπϕβ
2
π(ρ+ λ1 + λ2) + ((ϕφπ)2 + ϕ2β4

π)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[((ϕφπ)2 + ϕ2β4
π)(ρ+ λ1 + λ2)− 2ϕφπϕβ

2
π(ρλ1 + ρλ2 + λ1λ2)

+((ϕφπ)2 + ϕ2β4
π)ρλ1λ2]

]}
, (F.12)

E(π2
t ) =

1

k̃
(k2

3s
∗
1 + 2k3k4s

∗
2 + k2

4s
∗
3)

=
1

(1 + γϕφπ + ϕφy)2(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2){
σ2

1

[
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)2]

]
+σ2

2

[
[((1 + ϕφy)

2 + β4
y)− 2(1 + ϕφy)β

2
y(ρ+ λ1 + λ2) + ((1 + ϕφy)

2 + β4
y)

(ρλ1 + ρλ2 + λ1λ2)]− ρλ1λ2[((1 + ϕφy)
2 + β4

y)(ρ+ λ1 + λ2)− 2(1 + ϕφy)β
2
1 ·

(ρλ1 + ρλ2 + λ1λ2) + ((1 + ϕφy)
2 + β4

y)ρλ1λ2]
]}
. (F.13)

Note that here E(y2
t ) and E(π2

t ) in fact depend on the trace λ1 + λ2 and determinant

λ1λ2.

With the expression of covariance matrix EEEztzzz
′
t, in order to obtain the expressions

of first-order autocorrelation coefficient of output gap and inflation, we need to further

calculate the first-order autocovariance EEEztzzz
′
t−1.

Following the similar calculations to EEEztzzz
′
t, we can obtain

EEEztzzz
′
t−1 = C[ρI−C−1BβBβBβ2C]−1

∞∑
n=1

[ρn+1I−C−1(BβBβBβ2)n+1C]ΣΣΣ[ρnI− (C−1(BβBβBβ2)nC)′] ·

[ρI− (C−1BβBβBβ2C)′]−1C′

= k̃

[
k2

1w
∗
1 + k1k2(w∗2 + w∗3) + k2

2w
∗
4 k1k3w

∗
1 + k1k4w

∗
2 + k2k3w

∗
3 + k2k4w

∗
4

k1k3w
∗
1 + k2k3w

∗
2 + k1k4w

∗
3 + k2k4w

∗
4 k2

3w
∗
1 + k3k4(w∗2 + w∗3) + k2

4w
∗
4

]
,

52Because of limit of pages, we drop the calculations here.
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where k̃, ki are given in (F.11) and (F.7)-(F.10), and

w∗1 = σ2
1

{
(d1d4 − d2d3)2 ρ

1− ρ2
− d1d4(d1d4 − d2d3)

ρ+ λ1

1− ρλ1

+ (d1d4)2 λ1

1− λ2
1

+d2d3(d1d4 − d2d3)
ρ+ λ2

1− ρλ2

− d1d2d3d4
λ1 + λ2

1− λ1λ2

+ (d2d3)2 λ2

1− λ2
2

}
+σ2

2(d1d2)2
[ λ2

1− λ2
2

− λ1 + λ2

1− λ1λ2

+
λ1

1− λ2
1

]
,

w∗2 = σ2
1d3d4

{
(d1d4 − d2d3)

[ ρ

1− ρλ2

− ρ

1− ρλ1

]
+
d1d4λ1

1− λ2
1

− d1d4λ1 + d2d3λ2

1− λ1λ2

+
d2d3λ2

1− λ2
2

}
+σ2

2d1d2

{
(d1d4 − d2d3)

[ λ1

1− ρλ1

− λ2

1− ρλ2

]
+
d2d3λ1

1− λ2
1

− d1d4λ1 + d2d3λ2

1− λ1λ2

+
d1d4λ2

1− λ2
2

}
,

w∗3 = σ2
1d3d4

{
(d1d4 − d2d3)

[ λ2

1− ρλ2

− λ1

1− ρλ1

]
+
d1d4λ1

1− λ2
1

− d1d4λ2 + d2d3λ1

1− λ1λ2

+
d2d3λ2

1− λ2
2

}
+σ2

2d1d2

{
(d1d4 − d2d3)

[ ρ

1− ρλ1

− ρ

1− ρλ2

]
+
d1d4λ2

1− λ2
2

− d1d4λ2 + d2d3λ1

1− λ1λ2

+
d2d3λ1

1− λ2
1

}
,

w∗4 = σ2
1(d3d4)2

[ λ2

1− λ2
2

− λ1 + λ2

1− λ1λ2

+
λ1

1− λ2
1

]
+ σ2

2

{
(d1d4 − d2d3)2 ρ

1− ρ2

−d1d4(d1d4 − d2d3)
ρ+ λ2

1− ρλ2

+ (d1d4)2 λ2

1− λ2
2

+ d2d3(d1d4 − d2d3)
ρ+ λ1

1− ρλ1

−d1d2d3d4
λ1 + λ2

1− λ1λ2

+ (d2d3)2 λ1

1− λ2
1

}
.

Again through technical calculations, the first-order auto-covariances of output gap

and inflations are further simplified as

E(ytyt−1) =
1

k̃
(k2

1w
∗
1 + k1k2(w∗2 + w∗3) + k2

2w
∗
4)

=
1

(1 + γϕφπ + ϕφy)2(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2){
σ2

1

[
(ρ+ λ1 + λ2 − λβ2

π)[1− λβ2
π(ρ+ λ1 + λ2)] + [λβ2

π(ρλ1 + ρλ2 + λ1λ2)−

ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2
πρλ1λ2]

]
+ σ2

2

[
(ϕφπ(ρ+ λ1 + λ2)− ϕβ2

π))

[ϕφπ − ϕβ2
π(ρ+ λ1 + λ2)] + [ϕβ2

π(ρλ1 + ρλ2 + λ1λ2)− ϕφπρλ1λ2]

[ϕφπ(ρλ1 + ρλ2 + λ1λ2)− ϕβ2
πρλ1λ2]

]}
, (F.14)
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E(πtπt−1) =
1

k̃
(k2

3w
∗
1 + k3k4(w∗2 + w∗3) + k2

4w
∗
4)

=
1

(1 + γϕφπ + ϕφy)2(1− ρ2)(1− ρλ1)(1− λ2
1)(1− ρλ2)(1− λ2

2)(1− λ1λ2){
σ2

1

[
γ2[(ρ+ λ1 + λ2)− ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]

]
+ σ2

2

[
[(1 + ϕφy)(ρ+ λ1 + λ2)− β2

y ] ·

[(1 + ϕφy)− β2
y(ρ+ λ1 + λ2)] + [β2

y(ρλ1 + ρλ2 + λ1λ2)− (1 + ϕφy)ρλ1λ2] ·

[(1 + ϕφy)(ρλ1 + ρλ2 + λ1λ2)− β2
yρλ1λ2]

]}
. (F.15)

Therefore, the first-order autocorrelation coefficients of output gap and inflation

G1(βy, βπ) =
E(ytyt−1)

E(y2
t )

, G2(βy, βπ) =
E(πtπt−1)

E(π2
t )

,

i.e. the equations (3.13-3.18). Finally, the covariance between output gap and inflation is

given as

E(ytπt) =
(
− σ2

yγ
(
− (1 + γϕφπ + ϕφy)(1 + γϕφπ + ϕφy + β2

yρ) + β4
πλ(1 + γϕφπ

+ϕφy + β2
yρ)(λ+ γϕ+ λϕφy) + β2

πρ[β4
yλ+ β2

yλρ(1 + γϕφπ + ϕφy) + γϕ

(−1 + λφπ)(1 + γϕφπ + ϕφy)]− β2
yβ

6
πλ

2ρ(β2
yλ+ ρ(λ+ γϕ+ λϕφy))

)
+ σ2

πϕ(
− φπ(1 + γϕφπ + ϕφy)[−β4

y − β2
yγρϕφπ + (1 + ϕφy)(1 + γϕφπ + ϕφy)] + β2

yβ
6
πλρ

[−γϕ(−β2
y + ρ+ ρϕφy) + λρ(β4

y − (1 + ϕφy)
2)] + β4

π

(
γϕ(1− β2

yρ+ ϕφy)(1 + γϕφπ

+ϕφy) + λ(−1 + β2
yρ− ϕ(γφπ + φy))(β

4
y − (1 + ϕφy)

2) + β2
yλ

2ρφπ(−β4
y +

(1 + ϕφy)
2)
)

+ β2
πρ[−β6

yλρφπ + β2
yλρφπ(1 + ϕφy)(1 + γϕφπ + ϕφy)− (−1 + λφπ)

(1 + ϕφy)
2(1 + γϕφπ + ϕφy) + β4

y(−1− ϕ(γφπ + ϕy) + λ(φπ + ϕφπφy))]
))/(

(−1 + ρ2)(−1 + β2
yβ

2
πλ− ϕ(γφπ + φy))(1 + β2

yρ(−1 + β2
πλρ) + γϕφπ + ϕφy

−β2
πρ(λ+ γϕ+ λϕφy))

(
β4
y(−1 + β4

πλ
2) + 2β2

yβ
2
πγϕ(−1 + λφπ) + (1 + γϕφπ + ϕφy)

2

−β4
π(λ+ γϕ+ λϕφy)

2
))
. (F.16)

G Stability for the Taylor rule

This appendix shows the E-stability condition in Corollary 3. Based on Proposition

2, we only need to show that both of the eigenvalues of (III −BBBβββ2)−1(BBB−III) have negative

real parts if γ(φπ − 1) + (1− λ)φy > 0.

The characteristic polynomial of (III −BBBβββ2)−1(BBB− III) is given by h(ν) = ν2− c1ν + c2,

where c1 is the trace and c2 is the determinant of matrix (III − BBBβββ2)−1(BBB − III). Direct
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calculation shows that

c1 =
−(1− λ)(1− β2

y)− 2ϕ(γφπ + φy) + ϕ(γ + λφy)(1 + β2
π)

M (1 + γϕφπ + ϕφy)
, (G.1)

c2 =
ϕ[γ(φπ − 1) + (1− λ)φy]

M (1 + γϕφπ + ϕφy)
, (G.2)

where M=
(1−β2

y)(1−λβ2
π)+γϕφπ+ϕφy−(γϕ+λϕφy)β2

π

1+γϕφπ+ϕφy
.

Both of the eigenvalues of (III −BBBβββ2)−1(BBB − III) have negative real parts if and only if

c1 < 0 and c2 > 0 (these conditions are obtained by applying the Routh-Hurwitz criterion

theorem; see Brock and Malliaris, 1989). If γ(φπ − 1) + (1− λ)φy > 0, from Appendix E

it is easy to see M> 0. Furthermore,

c1 ≤
−2ϕ[(γ(φπ − 1) + (1− λ)φy]

M (1 + γϕφπ + ϕφy)
< 0, c2 > 0.

H Robustness Checks

This appendix provides some robustness checks on our estimations by considering

subsamples of our main dataset and using a third alternative definition of output gap

based on de-trended output.

Subsample Estimations

We first chek whether our main results hold across different sample periods. To this

end, we use our HP-filtered measure of output gap and consider three periods: 1966:I-

1979:II, the period before Great Moderation; 1966:I-2008:IV, the period before Great

Recession (i.e. before the zero lower bound episode); and 1984:I-2008:IV, the Great

Moderation period.

Table 4 reports the posterior mode and the corresponding Laplace approximation for

all periods under BLE and REE. It is readily seen that the difference between parameter

estimates are preserved across all three periods: BLE is characterized by lower persistence

but larger standard deviation estimates in shocks, a steeper Phillips curve characterized

by larger γ, and a smaller risk aversion coefficient. The estimation under BLE provides a

better model fit under all three subsamples, with Bayes’ Factors of 1.67, 3.93 and 2.44 in

favor of the BLE model.

65



Period 66:I-79:II 66:I-08:IV 84:I-08:IV

BLE REE BLE REE BLE REE
Laplace -118.63 -122.47 -313.16 -322.10 -34.32 -39.93
Bayes Factor 1.67 3.93 2.44

Parameter Mode Mode Mode

ηy 0.94 0.24 0.76 0.17 0.53 0.09
ηπ 0.38 0.06 0.3 0.04 0.18 0.08
ηr 0.20 0.20 0.31 0.32 0.15 0.15
ȳ -0.22 -0.14 -0.09 -0.14 0.05 -0.14
π̄ 0.93 0.75 0.84 0.71 0.61 0.58
r̄ 1.03 0.86 1.25 1.08 1.14 0.97
γ 0.054 0.01 0.033 0.006 0.046 0.007
1
ϕ

2.44 2.77 4.03 3.78 2.82 3.15

φπ 1.03 1.07 1.29 1.31 1.55 1.57
φy 0.39 0.36 0.45 0.42 0.48 0.54
ρy 0.5 0.87 0.42 0.88 0.44 0.94
ρπ 0.31 0.85 0.32 0.87 0.24 0.55
ρr 0.72 0.68 0.83 0.77 0.9 0.85

Table 4: Comparison of the sub-sample estimations under BLE and REE: 66:I-79:II, the
period before Great Moderation; 66:I-08:IV, the period before Great Recession and the
zero lower bound episode; and 84:I-08:IV, the Great Moderation period.

Alternative Definition of Output Gap: Based on De-trended Output

Next we repeat our estimations using a third alternative measure of output gap based

on de-trended output. The estimations over the main sample are reported in Table 5,

which also includes the CBO-based estimates for reference. It is readily seen that the

conclusions from this exercise are similar: BLE is characterized by lower persistence but

larger standard deviation estimates in shocks, a steeper Phillips curve characterized by

larger γ, and a smaller risk aversion coefficient. The likelihood is also better under BLE,

with a Bayes’ Factors of 11.49. Comparing the BLE estimates under de-trended and

CBO-based measures, we observe mainly similar measures with a few exeptions: with

the de-trended measure, we have a slightly lower γ and φy, while 1
ϕ

and ηy are slightly

higher. This suggests that the de-trended measure of output gap is even more volatile

than CBO-based measure, which in turn is more volatile than the HP-filtered measure

based on our results in Section 3.

As a final check, we compare the likelihoods across the three sub-samples with these

two measures of output gap, which is reported in Table 6: it is readily seen that the

likelihood under BLE is better for both measures under all sub-samples, although the

difference for the Great Moderation period 1985-I:2008:IV is much smaller. These results

are consistent with our previous findings.
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BLE det. REE det. BLE CBO. REE CBO.
Laplace -360.96 -387.42 -342.9 -366.88
Bayes Factor 11.49 10.41

Post. Post.
Parameter Mode Mode Mode Mode
ηy 0.78 0.08 0.74 0.11
ηπ 0.3 0.04 0.29 0.04
ηr 0.3 0.31 0.29 0.3
ȳ -0.13 -0.19 -0.54 -0.42
π̄ 0.79 0.66 0.81 0.59
r̄ 1.09 0.92 1.15 1.05
γ 0.017 0.004 0.024 0.006
1
ϕ

2.92 4.86 2.65 4.57

φπ 1.44 1.45 1.41 1.43
φy 0.22 0.16 0.36 0.27
ρy 0.42 0.88 0.42 0.89
ρπ 0.31 0.94 0.31 0.92
ρr 0.88 0.79 0.88 0.8

Table 5: Alternative estimations of the 3-equation NKPC model: we compare the results
under BLE and REE with two alternative specifications of output gap. In the first case
output gap is defined as the deviation of output from a quadratic trend, while in the latter
we take the output gap based on CBO’s measure of potential output.

66:I-79:II 66:I-08:IV 84:I-08:IV

BLE REE BLE REE BLE REE

CBO’s estimate -126.07 -127.6 -321.9 -344.4 -36.7 -46.9
Bayes Factor 0.66 9.77 4.43

Detrended output -129.9 -133.1 -333.1 -353.2 -48.4 -66.9
Bayes Factor 1.39 8.73 8.03

Table 6: Sub-sample estimations with alternative definitions of output gap.

I Data Appendix

This appendix describes the dataset used in our estimations. The observable variables

used in our estimations follow the definitions in Smets & Wouters (2007). Accordingly:
yobst = 100log(GDPC09t/LNSindext)

πobst = 100log( GDPDEF09t
GDPDEF09t−1

)

robst = 100log(Fundst
4

)

(I.1)
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where the time series are given as:

GDPC09: Real GDP, Billions of Chained 2009 Dollars, Seasonally Adjusted Annual

Rate. Source: Federal Reserve Economic Data (FRED).

GDPDEF09: GDP-Implicit Price Deflator, 2009=100, Seasonally Adjusted. Source:

FRED.

LNU00000000:Unadjusted civilian noninstitutional population, Thousands, 16 years&

over. Source: U.S. Bureau of Labor Statistics (BLS)

LNS10000000: Civilian noninstitutional populations, Thousands, 16 years & over, Sea-

sonally Adjusted.

Source: BLS.

LNSindex = LNS10000000
LNS10000000(1992:03)

Source: FRED.

Funds:Federal Funds Rate, Daily Figure Averages in Percentages. Source: FRED.

The observable variable xobst for the output gap in our main estimations is based on

the HP-filtered series of yobst , while the CBO-based output gap is defined as: xt =

100GDPC09−GDPPOT
GDPPOT

with GDPPOT53: CBO’s Estimate of the Potential Output, Billions of Chained 2009

Dollars, Not Seasonally Adjusted Quarterly Rate. Source: FRED.
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